Defining Carbohydrate Antigens as HIV Vaccine Candidates

2007 ◽  
Vol 13 (2) ◽  
pp. 185-201 ◽  
Author(s):  
Anastas Pashov ◽  
Marty Perry ◽  
Michael Dyar ◽  
Marie Chow ◽  
Thomas Kieber-Emmons
2015 ◽  
Vol 13 (6) ◽  
pp. 462-478 ◽  
Author(s):  
Thorsten Demberg ◽  
Marjorie Robert-Guroff

2015 ◽  
Vol 23 (2) ◽  
pp. 84-94 ◽  
Author(s):  
David R. Martinez ◽  
Sallie R. Permar ◽  
Genevieve G. Fouda

ABSTRACTExtensive studies have demonstrated that infant immune responses are distinct from those of adults. Despite these differences, infant immunization can elicit protective immune responses at levels comparable to or, in some cases, higher than adult immune responses to many vaccines. To date, only a few HIV vaccine candidates have been tested in infant populations, and none of them evaluated vaccine efficacy. Recent exciting studies showing that HIV-infected infants can develop broad neutralizing antibody responses and that some HIV vaccine regimens can elicit high levels of potentially protective antibodies in infants provide support for the development and testing of HIV vaccines in pediatric populations. In this review, we discuss the differences in adult and infant immune responses in the setting of HIV infection and vaccination.


2020 ◽  
Author(s):  
Isabela Silva de Castro ◽  
Giacomo Gorini ◽  
Rosemarie Mason ◽  
Jason Gorman ◽  
Massimiliano Bissa ◽  
...  

2012 ◽  
Vol 28 (9) ◽  
pp. 1131-1138 ◽  
Author(s):  
Andrew Musyoki ◽  
Khutso Mothapo ◽  
Johnny Rakgole ◽  
Azwidowi Lukhwareni ◽  
Pascal Bessong ◽  
...  

mSphere ◽  
2019 ◽  
Vol 4 (4) ◽  
Author(s):  
Anjali Singh ◽  
Sallie Permar ◽  
Tobias R. Kollmann ◽  
Ofer Levy ◽  
Mary Marovich ◽  
...  

ABSTRACT This report summarizes a consultation meeting convened by the National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), on 12 September 2017 to discuss the scientific rationale for selectively testing relevant HIV vaccine candidates in early life that are designed to initiate immune responses for lifelong protective immunity. The urgent need to develop interventions providing durable protective immunity to HIV before sexual debut coupled with the practicality of infant vaccine schedules supports optimizing infant HIV vaccines as a high priority. The panelists discussed the unique opportunities and challenges of testing candidate HIV vaccines in the context of distinct early-life immunity. Key developments providing rationale and grounds for cautious optimism regarding evaluation of early-life HIV vaccines include recent studies of early-life immune ontogeny, studies of HIV-infected infants demonstrating relatively rapid generation of broadly neutralizing antibodies (bNAbs), discovery of novel adjuvants active in early life, and cutting-edge sample-sparing systems biology and immunologic assays promising deep insight into vaccine action in infants. Multidisciplinary efforts toward the goal of an infant HIV vaccine are under way and should be nurtured and amplified. IMPORTANCE Young adults represent one of the highest-risk groups for new HIV infections and the only group in which morbidity continues to increase. Therefore, an HIV vaccine to prevent HIV acquisition in adolescence is a top priority. The introduction of any vaccine during adolescence is challenging. This meeting discussed the opportunities and challenges of testing HIV vaccine candidates in the context of the infant immune system given recent advances in our knowledge of immune ontogeny and adjuvant design and studies demonstrating that HIV-infected infants generate broadly neutralizing antibodies, a main target of HIV vaccines, more rapidly than adults. Considering the global success of pediatric vaccines, the concept of an HIV vaccine introduced in early life holds merit and warrants testing.


2014 ◽  
Vol 89 (2) ◽  
pp. 970-988 ◽  
Author(s):  
Beatriz Perdiguero ◽  
Carmen Elena Gómez ◽  
Victoria Cepeda ◽  
Lucas Sánchez-Sampedro ◽  
Juan García-Arriaza ◽  
...  

ABSTRACTThe generation of vaccines against HIV/AIDS able to induce long-lasting protective immunity remains a major goal in the HIV field. The modest efficacy (31.2%) against HIV infection observed in the RV144 phase III clinical trial highlighted the need for further improvement of HIV vaccine candidates, formulation, and vaccine regimen. In this study, we have generated two novel NYVAC vectors, expressing HIV-1 clade C gp140(ZM96) (NYVAC-gp140) or Gag(ZM96)-Pol-Nef(CN54) (NYVAC-Gag-Pol-Nef), and defined their virological and immunological characteristics in cultured cells and in mice. The insertion of HIV genes does not affect the replication capacity of NYVAC recombinants in primary chicken embryo fibroblast cells, HIV sequences remain stable after multiple passages, and HIV antigens are correctly expressed and released from cells, with Env as a trimer (NYVAC-gp140), while in NYVAC-Gag-Pol-Nef-infected cells Gag-induced virus-like particles (VLPs) are abundant. Electron microscopy revealed that VLPs accumulated with time at the cell surface, with no interference with NYVAC morphogenesis. Both vectors trigger specific innate responses in human cells and show an attenuation profile in immunocompromised adult BALB/c and newborn CD1 mice after intracranial inoculation. Analysis of the immune responses elicited in mice after homologous NYVAC prime/NYVAC boost immunization shows that recombinant viruses induced polyfunctional Env-specific CD4 or Gag-specific CD8 T cell responses. Antibody responses against gp140 and p17/p24 were elicited. Our findings showed important insights into virus-host cell interactions of NYVAC vectors expressing HIV antigens, with the activation of specific immune parameters which will help to unravel potential correlates of protection against HIV in human clinical trials with these vectors.IMPORTANCEWe have generated two novel NYVAC-based HIV vaccine candidates expressing HIV-1 clade C trimeric soluble gp140 (ZM96) and Gag(ZM96)-Pol-Nef(CN54) as VLPs. These vectors are stable and express high levels of both HIV-1 antigens. Gag-induced VLPs do not interfere with NYVAC morphogenesis, are highly attenuated in immunocompromised and newborn mice after intracranial inoculation, trigger specific innate immune responses in human cells, and activate T (Env-specific CD4 and Gag-specific CD8) and B cell immune responses to the HIV antigens, leading to high antibody titers against gp140. For these reasons, these vectors can be considered vaccine candidates against HIV/AIDS and currently are being tested in macaques and humans.


2004 ◽  
Vol 40 (11) ◽  
pp. 949 ◽  
Author(s):  
T.T. Wu ◽  
G. Johnson

Sign in / Sign up

Export Citation Format

Share Document