Investigation of the Adsorption Rubraca Anticancer Drug on the CNT(4,4-8) Nanotube as a Factor of Drug Delivery: A Theoretical Study Based on DFT Method

2019 ◽  
Vol 19 (7) ◽  
pp. 473-486 ◽  
Author(s):  
Masoome Sheikhi ◽  
Siyamak Shahab ◽  
Mehrnoosh Khaleghian ◽  
Mahin Ahmadianarog ◽  
Fatemeh Azarakhshi ◽  
...  

Background: In the present study, the interaction between new drug Rubraca and CNT(4,4-8) nanotube by Density Functional Theory (DFT) calculations in an aqueous medium for first time have been investigated. Method and Results: According to calculations, the intermolecular hydrogen bonds take place between active positions of the molecule Rubraca and hydrogen atoms of the nanotube that plays an important role in the stability of the complex CNT(4,4- 8)/Rubraca. The non-bonded interaction effects of the molecule Rubraca with CNT(4,4- 8) nanotube on the electronic properties, chemical shift tensors and natural charge have been also detected. The natural bond orbital (NBO) analysis suggested that the molecule Rubraca as an electron donor and the CNT(4,4-8) nanotube plays the role an electron acceptor at the complex CNT(4,4-8)/Rubraca. The electronic spectra of the Rubraca drug and the complex CNT(4,4-8)/Rubraca were also calculated by Time Dependent Density Functional Theory (TD-DFT) for the investigation of adsorption effect of the Rubraca drug over nanotube. Conclusion: The use of CNT(4,4-8) nanotube for Rubraca delivery to the diseased cells have been established.

2019 ◽  
Vol 19 (2) ◽  
pp. 91-104 ◽  
Author(s):  
Masoome Sheikhi ◽  
Siyamak Shahab ◽  
Radwan Alnajjar ◽  
Mahin Ahmadianarog ◽  
Sadegh Kaviani

Objective: In the present study, the interaction between drug Tyrphostin AG528 and CNT(6,6-6) nanotube by Density Functional Theory (DFT) calculations in solvent water has been investigated for the first time. Methods and Results: According to the calculations, intermolecular hydrogen bonds take place between an active position of the molecule Tyrphostin AG528 and hydrogen atoms of the nanotube which play an important role in the stability of complex CNT(6,6- 6)/Tyrphostin AG528. The non-bonded interaction effects of the molecule Tyrphostin AG528 with CNT(6,6-6) nanotube on the electronic properties, chemical shift tensors and natural charge have also been detected. The natural bond orbital (NBO) analysis suggested that the molecule Tyrphostin AG528 as an electron donor and the CNT(6,6-6) nanotube play the role of an electron acceptor at the complex CNT(6,6-6)/Tyrphostin AG528. Conclusion: The electronic spectra of the Tyrphostin AG528 drug and complex CNT(6,6-6)/Tyrphostin AG528 in solvent water were calculated by Time-Dependent Density Functional Theory (TD-DFT) for the investigation of adsorption effect of the Tyrphostin AG528 drug over nanotube on maximum wavelength. Then, the possibility of the use of CNT(6,6-6) nanotube for Tyrphostin AG528 delivery to the diseased cells has been established.


2016 ◽  
Vol 879 ◽  
pp. 250-255
Author(s):  
Nassim Boudalia ◽  
Jean Marc Raulot ◽  
Etienne Patoor ◽  
Claude Esling

Shape memory alloys (SMA) have been at the forefront of research in recent years. They have been used for a wide variety of applications in various fields. This work presents a brief study at the atomic scale of Cu-Al based Shape Memory Alloys. Using first-principles Density Functional Theory (DFT) method, the stability of different austenitic and martensitic phases of Cu3Al, the effect of intrinsic vacancies, the doping effect by an element X (X = Be, Zn, Ti, Ni, Ag and Au) have been studied.


2015 ◽  
Vol 817 ◽  
pp. 690-697
Author(s):  
Yong Hua Duan ◽  
Yong Sun ◽  
Ming Jun Peng

The stability and electronic properties of Mg2Pb (100), (110) and (111) surfaces were investigated by using the first-principles density functional theory (DFT) method. The calculated results showed that the orders of relaxation and surface energy are |∆d15(111)| < |∆d15(110)| < |∆d15(100)| andEsurf(100) >Esurf(110) >Esurf(111), respectively, indicating that Mg2Pb (111) surface is the most stable among these three low index surfaces. The Density of states (DOS) of Mg2Pb surfaces are mainly dominated by Pb-6, Mg-3s, and 2porbitals in the band ranging from-5 eV to Fermi level. It can be further obtained from results of the DOS and the charge density difference that Mg2Pb (111) surface is more stable than Mg2Pb (100) and (110) surfaces. The Mg2Pb (111) surface is the thermodynamically most favorable over all of the range of.


2018 ◽  
Vol 83 (2) ◽  
pp. 139-155 ◽  
Author(s):  
Nevena Prlainovic ◽  
Milica Rancic ◽  
Ivana Stojiljkovic ◽  
Jasmina Nikolic ◽  
Sasa Drmanic ◽  
...  

The substituent and solvent effects on solvatochromism in 3-[(4-substituted) phenylamino]isobenzofuran-1(3H)-ones were studied using experimental and theoretical methodologies. The effect of specific and non-specific solvent?solute interactions on the shifts of UV?Vis absorption maxima were evaluated using the Kamlet?Taft and Catal?n solvent parameter sets. The experimental results were studied by density functional theory (DT) and time-dependent density functional theory (TD-DFT). The HOMO/LUMO energies (EHOMO/ELUMO) and energy gap (Egap) values, as well as the mechanism of electronic excitations and the changes in the electron density distribution in both ground and excited states of the investigated molecules were studied by calculation in the gas phase. The electronic excitations were calculated by the TD-DFT method in the solvent methanol. It was found that both substituents and solvents influence the degree of ?-electron conjugation of the synthesized molecules and affect the intramolecular charge transfer character.


Author(s):  
Hooriye Yahyaei ◽  
Shamsa Sharifi ◽  
Siyamak Shahab ◽  
Masoome Sheikhi ◽  
Mahin Ahmadianarog

For the first time in the present study, we studied the adsorption effect of the Solriamfetol (SOF) on the electronic and optical properties of B12N12 fullerene using density functional theory (DFT) and time-dependent density functional theory (TD-DFT) calculations with the M062X/6-311++G(d,p) level of theory in the solvent water. The calculated adsorp-tion energies of SOF drug with the B12N12 fullerene were computed at T= 298.15 K with the M062X functional. The UV/Vis absorption spectra were computed and investigated for study the significant changes happening in interactions between SOF and B12N12 fullerene. The IR spectra also were calculated and investigated. The calculated results indicate that the adsorption of the SOF drug from its internal NH2 group on the B12N12 fullerene (configuration B) has the most chemical stability rather than configuration A and C. According to the NBO results, the SOF molecule and B12N12 fullerene identify as both electrons donor and acceptor at the complexes B12N12-SOF. On the other hand, the charge transfer is occurred between the bonding, antibonding or nonbonding orbitals in the SOF drug and B12N12 fullerene. It is found that the applied B12N12 fullerene can be suitable as a drug carrier for the delivery of SOF as drug for treatment of excessive sleepiness.


2006 ◽  
Vol 05 (04) ◽  
pp. 957-965 ◽  
Author(s):  
BO-CHENG WANG ◽  
CHIN-KUEN TAI

In this paper, we have performed the optimized structures of the red emitting material, 4-(dicyanomethylene)-2-methyl-6-[p-(dimethyl amino) styryl]-4H-pyran (DCM), with different polarity solvent environments by using the density functional theory (DFT) method, B3LYP/6-31G*. The time-dependent density functional theory (TD-DFT) and the polarizable continuum model (PCM) have been used to obtain the optical properties in the solvent environment. It has been observed that when the solvent polarity increases, the DCM molecule exhibits the red shift in the maximum absorption wavelength [Formula: see text] and enhances the oscillator strength (f). The solvent polarity also enhances the electron transfer ability from the electron-donating dimethylamine group (-N(CH3)2) to the electron-withdrawing =C(CN)2 group. The S 0 → S 1 transition of DCM is found to be π–π*. The maximum absorption wavelengths [Formula: see text] of different solvent environments are found to be consistent with the reported experimental results.


2021 ◽  
Author(s):  
Agnieszka Kącka-Zych ◽  
Radomir Jasinski

Conversion of N-trialkylsilyloxy nitronates into bicyclic isoxazoline derivatives has been explored using Density Functional Theory (DFT) method within the context of the Molecular Electron Density Theory (MEDT) at the B97XD(PCM)/6-311G(d,p)...


Author(s):  
Huimin Guo ◽  
Xiaolin Ma ◽  
Zhiwen Lei ◽  
Yang Qiu ◽  
Bernhard Dick ◽  
...  

The electronic structure and photophysical properties of a series of N-Methyl and N-Acetyl substituted alloxazine (AZs) were investigated with extensive density functional theory (DFT) and time-dependent density functional theory (TD-DFT)...


Sign in / Sign up

Export Citation Format

Share Document