Focal Adhesion Kinase in Ovarian Cancer: A Potential Therapeutic Target for Platinum and Taxane-Resistant Tumors

2019 ◽  
Vol 19 (3) ◽  
pp. 179-188 ◽  
Author(s):  
Arkene Levy ◽  
Khalid Alhazzani ◽  
Priya Dondapati ◽  
Ali Alaseem ◽  
Khadijah Cheema ◽  
...  

Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase, which is an essential player in regulating cell migration, invasion, adhesion, proliferation, and survival. Its overexpression and activation have been identified in sixty-eight percent of epithelial ovarian cancer patients and this is significantly associated with higher tumor stage, metastasis, and shorter overall survival of these patients. Most recently, a new role has emerged for FAK in promoting resistance to taxane and platinum-based therapy in ovarian and other cancers. The development of resistance is a complex network of molecular processes that make the identification of a targetable biomarker in platinum and taxane-resistant ovarian cancer a major challenge. FAK overexpression upregulates ALDH and XIAP activity in platinum-resistant and increases CD44, YB1, and MDR-1 activity in taxaneresistant tumors. FAK is therefore now emerging as a prognostically significant candidate in this regard, with mounting evidence from recent successes in preclinical and clinical trials using small molecule FAK inhibitors. This review will summarize the significance and function of FAK in ovarian cancer, and its emerging role in chemotherapeutic resistance. We will discuss the current status of FAK inhibitors in ovarian cancers, their therapeutic competencies and limitations, and further propose that the combination of FAK inhibitors with platinum and taxane-based therapies could be an efficacious approach in chemotherapeutic resistant disease.

Diabetes ◽  
2012 ◽  
Vol 61 (7) ◽  
pp. 1708-1718 ◽  
Author(s):  
E. P. Cai ◽  
M. Casimir ◽  
S. A. Schroer ◽  
C. T. Luk ◽  
S. Y. Shi ◽  
...  

2005 ◽  
Vol 11 (24) ◽  
pp. 8829-8836 ◽  
Author(s):  
Jyotsnabaran Halder ◽  
Charles N. Landen ◽  
Susan K. Lutgendorf ◽  
Yang Li ◽  
Nicholas B. Jennings ◽  
...  

2010 ◽  
Vol 120 (5) ◽  
pp. 1515-1523 ◽  
Author(s):  
Anil K. Sood ◽  
Guillermo N. Armaiz-Pena ◽  
Jyotsnabaran Halder ◽  
Alpa M. Nick ◽  
Rebecca L. Stone ◽  
...  

2000 ◽  
Vol 348 (1) ◽  
pp. 119-128 ◽  
Author(s):  
Madeleine TOUTANT ◽  
Jeanne-Marie STUDLER ◽  
Ferran BURGAYA ◽  
Alicia COSTA ◽  
Pascal EZAN ◽  
...  

In brain, focal adhesion kinase (FAK) is regulated by neurotransmitters and has a higher molecular mass than in other tissues, due to alternative splicing. Two exons code for additional peptides of six and seven residues (‘boxes’ 6 and 7), located on either side of Tyr397, which increase its autophosphorylation. Using in situ hybridization and a monoclonal antibody (Mab77) which does not recognize FAK containing box 7, we show that, although mRNAs coding for boxes 6 and 7 have different patterns of expression in brain, FAK+6,7 is the main isoform in forebrain neurons. The various FAK isoforms fused to green fluorescent protein were all targeted to focal adhesions in non-neuronal cells. Phosphorylation-state-specific antibodies were used to study in detail the phosphorylation of Tyr397, a critical residue for the activation and function of FAK. The presence of boxes 6 and 7 increased autophosphorylation of Tyr397 independently and additively, whereas they had a weak effect on FAK kinase activity towards poly(Glu,Tyr). Src-family kinases were also able to phosphorylate Tyr397 in cells, but this phosphorylation was decreased in the presence of box 6 or 7, and abolished in the presence of both. Thus the additional exons characteristic of neuronal isoforms of FAK do not alter its targeting, but change dramatically the phosphorylation of Tyr397. They increase its autophosphorylation in vitro and in transfected COS-7 cells, whereas they prevent its phosphorylation when co-transfected with Src-family kinases.


2018 ◽  
Vol 19 (4) ◽  
pp. 316-327 ◽  
Author(s):  
Rajani Kanteti ◽  
Tamara Mirzapoiazova ◽  
Jacob J. Riehm ◽  
Immanuel Dhanasingh ◽  
Bolot Mambetsariev ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document