pancreatic cell
Recently Published Documents


TOTAL DOCUMENTS

614
(FIVE YEARS 119)

H-INDEX

79
(FIVE YEARS 6)

2022 ◽  
Vol 11 ◽  
Author(s):  
Bowen Huang ◽  
Jianzhou Liu ◽  
Jun Lu ◽  
Wenyan Gao ◽  
Li Zhou ◽  
...  

Pancreatic cancer is a highly malignant tumor with a poor survival prognosis. We attempted to establish a robust prognostic model to elucidate the clinicopathological association between lncRNA, which may lead to poor prognosis by influencing m6A modification, and pancreatic cancer. We investigated the lncRNAs expression level and the prognostic value in 440 PDAC patients and 171 normal tissues from GTEx, TCGA, and ICGC databases. The bioinformatic analysis and statistical analysis were used to illustrate the relationship. We implemented Pearson correlation analysis to explore the m6A-related lncRNAs, univariate Cox regression and Kaplan-Meier methods were performed to identify the seven prognostic lncRNAs signatures. We inputted them in the LASSO Cox regression to establish a prognostic model in the TCGA database, verified in the ICGC database. The AUC of the ROC curve of the training set is 0.887, while the validation set is 0.711. Each patient has calculated a risk score and divided it into low-risk and high-risk subgroups by the median value. Moreover, the model showed a robust prognostic ability in the stratification analysis of different risk subgroups, pathological grades, and recurrence events. We established a ceRNA network between lncRNAs and m6A regulators. Enrichment analysis indicated that malignancy-associated biological function and signaling pathways were enriched in the high-risk subgroup and m6A-related lncRNAs target mRNA. We have even identified small molecule drugs, such as Thapsigargin, Mepacrine, and Ellipticine, that may affect pancreatic cancer progression. We found that seven lncRNAs were highly expressed in tumor patients in the GTEx-TCGA database, and LncRNA CASC19/UCA1/LINC01094/LINC02323 were confirmed in both pancreatic cell lines and FISH relative quantity. We provided a comprehensive aerial view between m6A-related lncRNAs and pancreatic cancer’s clinicopathological characteristics, and performed experiments to verify the robustness of the prognostic model.


2022 ◽  
Author(s):  
Guodong Chen ◽  
Chengming Ding ◽  
Weiping Tang ◽  
Shuo Qi ◽  
Pengyu Zhou ◽  
...  

Abstract Astragaloside IV (AS-IV) or 3-O-β-D-xylopyranosyl-6-O-β-D-glucopyranosylcyl-cloastragenol is a bioactive saponin extract from the root of Astragalus membranaceus. It has been proven to have an anti-tumor effect in a variety of tumors by inducing cell apoptosis and inhibiting cell proliferation. Its effects on pancreatic cancer have not been investigated. This study investigated the effects of AS-IV on proliferation, apoptosis and migration of pancreatic cancer cells in vitro and in vivo and explored its underlying mechanism. Pancreatic cancer cell lines SW1990 and Panc-1were treated with different doses of AS-IV. Plate clonality, CCK-8, EDU and flow cytometry were used to explore the effect of AS-IV on pancreatic cancer cell proliferation and cell cycle in vitro. Wound healing was used to investigate the effects of AS-IV on pancreatic cell migration. The protein expression levels of Bax/Bcl2, caspase3/7, cyclin D1, cyclin E and CDK4 were analyzed by western blotting. The results showed that AS-IV significantly inhibited tumor cell proliferation and cell cycle, induced apoptosis both in vitro and vivo on a dose-dependent basis and significantly inhibited the growth of pancreatic cell xenograft tumor in nude mice. Wound healing assays indicated that AS-IV also inhibited the migration of pancreatic cancer cells in a dose-dependent manner. This research confirmed that AS-IV inhibited pancreatic cancer cell proliferation by blocking the cell cycle and inducing apoptosis. It was hypothesized from this experiment that the potential mechanism of AS-IV inducing apoptosis of pancreatic cancer cells may be understood by activating the Bcl2/Bax/Caspase-3/Caspase-7 signaling pathway.


2021 ◽  
Vol 1 (2) ◽  
pp. 114
Author(s):  
Kadek Resa Widiasari ◽  
I Made Kusuma Wijaya ◽  
Putu Adi Suputra

AbstrakDiabetes melitus menggambarkan sekelompok penyakit metabolik yang temuan umumnya adalah kadar glukosa darah yang meningkat. Pada usia 20-79 tahun, terdapat 463 juta atau setara 9,3% orang di dunia menderita diabetes pada tahun 2019. Diabetes melitus tipe 2 ditandai dengan defisiensi insulin relatif yang disebabkan oleh disfungsi sel pankreas dan resistensi insulin. Faktor risiko penyebabnya dibagi menjadi dua yaitu faktor risiko yang dapat dimodifikasi dan tidak dapat dimodifikasi. Gejala klasik diabetes seperti poliuria, polidipsia, polifagia dan penurunan berat badan yang tidak dapat dijelaskan sebabnya. Empat tes diagnostik untuk diabetes yaitu pengukuran glukosa plasma puasa, glukosa plasma 2 jam setelah TTGO 75 g, HbA1c, dan glukosa darah acak dengan adanya tanda dan gejala klasik diabetes. Tatalaksana dibagi menjadi dua, yaitu farmakologi dan non farmakologi. Tatalaksana non farmakologis terdiri atas edukasi, nutrisi medis, dan latihan fisik. Terapi farmakologis terdiri atas obat oral dan bentuk suntikan dalam bentu obat anti hiperglikemik dan insulin. Terapi farmakologi dan non farmakologi ini berjalan beriringan. Penulisan artikel ini menggunakan metode literature review dan diharapkan dapat dijadikan acuan kedepan dalam melakukan tindakan pencegahan dan pengobatan pasien diabetes melitus sehingga prevalensi berkurang dan komplikasi dapat dihindari.   AbstractDiabetes mellitus describes a group of metabolic diseases whose common finding is elevated blood glucose levels. At the age of 20-79 years, there were 463 million or 9.3% of people in the world suffer from diabetes in 2019. Type 2 diabetes mellitus is characterized by relative insulin deficiency caused by pancreatic cell dysfunction and insulin resistance. The risk factors that cause it are divided into two, namely modifiable and non-modifiable risk factors. The classic symptoms of diabetes include polyuria, polydipsia, polyphagia and unexplained weight loss. The four diagnostic tests for diabetes are measurement of fasting plasma glucose, plasma glucose 2 hours after OGTT 75 g, HbA1c, and randomized blood glucose in the presence of classic signs and symptoms of diabetes. Treatment is divided into two, namely pharmacological and non-pharmacological. Non-pharmacological management consists of education, medical nutrition, and physical exercise. Pharmacological therapy consists of oral drugs and injections in the form of anti-hyperglycemic drugs and insulin. Pharmacological and non-pharmacological therapy goes hand in hand. The writing of this article uses the literature review method and is expected to be used as a future reference in carrying out prevention and treatment of diabetes mellitus patients so that prevalence is reduced and complications can be avoided.  


Author(s):  
Jaiganesh Inbanathan ◽  
Chandrasekaran Krithika ◽  
K. Ponnazhagan ◽  
Srividhya Srinivasan ◽  
P. Manodh ◽  
...  

Background and Objectives: Stem cells from human exfoliated deciduous teeth (SHEDs) have been demonstrated as a novel population of adult stem cells capable of multi-differentiation potential. Methods: Study samples comprise of 30 extracted exfoliating primary teeth collected from children aged 6 to 14 years. After attaining the required cell passage, flowcytometric analysis and trilineage differentiation was done to characterize SHEDs. Further SHEDs were differentiated into Islet like cell aggregates (ICAs) using Serum free media A,B&C. Differentiated ICAs were characterized by RT-PCR, immunocytochemistry, DTZ stain and insulin assay. Results: Flowcytometric analysis of SHEDs showed expression of positive markers CD73, CD90 while no expression of negative markers CD34, CD45 and HLA-DR. Isolated SHEDs had the potential to differentiate into tri-lineages and ICAs. RT-PCR analysis of derived ICAs showed up-regulated expression of GAPDH, insulin, Glut2, PDX1 and PAX6. Immunofluorescence analysis gave expression of Ngn3, Isl-1, C-peptide, Glut2 and PDX1. DTZ stained positive on derived ICAs.Insulin secretion of SHED derived ICAs were measured 26 ± 6 MIU/L at basal glucose level, 128±3 MIU/L and 240 ±9 MIU/L at stimulated glucose level which gave a statistically significant difference in mean value of insulin secreted in different concentration of glucose (p<0.001). The net insulin secretion value of SHED derived ICAs at different glucose concentration was less when compared with Min 6 cells used as positive control. Interpretation and Conclusion: Stem cells from Human Exfoliated Deciduous teeth are mesenchymal stem cells which has the unique potential to differentiate into islet like cell aggregates and serve as a promising source of insulin which under standardized protocols and experimentations can be used for stem cell based therapy for insulin dependent diabetes mellitus.


Author(s):  
Hadiya Sibghatullah ◽  
Sibghatullah Muhammad Ali Sangi ◽  
Elsamoual Ibrahim Ahmedani ◽  
Ali Alqahtani ◽  
Abdulhakim Bawadekji ◽  
...  

Background: Type 2 Diabetes Mellitus has become a global concern. To date numerous studies have been conducted but little literature is available to explain the effects of mobile phone radiation on pancreas, where from Insulin is secreted. In Some studies, effects of ionizing radiation have been examined and established the relationship between cell phone exposure and cell damage. Objectives: Objectives of study were to observe the effects of mobile phones, connected with WiFi on the pancreas. Methods: 40 male Wistar Albino rats were exposed tomobile phones connected with Wi-Fi for eight weeks. Results: The histopathological examination of the rat pancreas revealed that, exposure of rats to cell phones and Wi-Fi causes significant damage to the rat pancreas. Conclusion: The ionizing radiation emitted from cell phones and WiFi causes increase in oxidative stress leading to inflammation and pancreatic cell death that may affect glucose homeostasis.


Author(s):  
Sarah Brumskill ◽  
Lawrence N. Barrera ◽  
Peter Calcraft ◽  
Caroline Phillips ◽  
Eithne Costello

AbstractPancreatic ductal adenocarcinoma (PDAC) is characterised by a pro-inflammatory stroma and multi-faceted microenvironment that promotes and maintains tumorigenesis. However, the models used to test new and emerging therapies for PDAC have not increased in complexity to keep pace with our understanding of the human disease. Promising therapies that pass pre-clinical testing often fail in pancreatic cancer clinical trials. The objective of this study was to investigate whether changes in the drug-dosing regimen or the addition of cancer-associated fibroblasts (CAFs) to current existing models can impact the efficacy of chemotherapy drugs used in the clinic. Here, we reveal that gemcitabine and paclitaxel markedly reduce the viability of pancreatic cell lines, but not CAFs, when cultured in 2D. Following the use of an in vitro drug pulsing experiment, PDAC cell lines showed sensitivity to gemcitabine and paclitaxel. However, CAFs were less sensitive to pulsing with gemcitabine compared to their response to paclitaxel. We also identify that a 3D co-culture model of MIA PaCa-2 or PANC-1 with CAFs showed an increased chemoresistance to gemcitabine when compared to standard 2D mono-cultures a difference to paclitaxel which showed no measurable difference between the 2D and 3D models, suggesting a complex interaction between the drug in study and the cell type used. Changes to standard 2D mono-culture-based assays and implementation of 3D co-culture assays lend complexity to established models and could provide tools for identifying therapies that will match clinically the success observed with in vitro models, thereby aiding in the discovery of novel therapies.


2021 ◽  
Author(s):  
Su Chun ◽  
Long Gao ◽  
Catherine L May ◽  
James A Pippin ◽  
Keith Boehm ◽  
...  

Three-dimensional (3D) chromatin organization maps help to dissect cell type-specific gene regulatory programs. Furthermore, 3D chromatin maps have contributed to elucidating the pathogenesis of complex genetic diseases by connecting distal regulatory regions and genetic risk variants to their respective target genes. To understand the cell type-specific regulatory architecture of diabetes risk, we generated transcriptomic and 3D epigenomic profiles of human pancreatic acinar, alpha, and beta cells using single-cell RNA-seq, single-cell ATAC-seq, and high-resolution Hi-C of sorted cells. Comparisons of these profiles revealed differential A/B (open/closed) chromatin compartmentalization, chromatin looping, and control of cell type-specific gene regulatory programs. We identified a total of 1,094 putative causal-variant-target-gene pairs at 129 type 2 diabetes GWAS signals using pancreatic 3D chromatin maps. We found that the connections between candidate causal variants and their putative target effector genes are cell-type stratified and emphasize previously underappreciated roles for alpha and acinar cells in diabetes pathogenesis


2021 ◽  
Vol 9 (F) ◽  
pp. 613-619
Author(s):  
Aufa Baraja ◽  
Fadhilla Rachmawati Sunarto ◽  
Arga Setyo Adji ◽  
Fitri Handajani ◽  
Firman Suryadi Rahman

BACKGROUND: Type 1 diabetes mellitus (T1DM) is a chronic disease in children which is usually caused by autoimmunity that damages pancreatic a and b cells which have functions as blood glucose regulators. Some studies stated that Renalase (RNLS) gene deletion will protect these b cells from autoimmune reactions and Endoplasmic Reticulum (ER) stress. RNLS deletion by genome editing Clustered Regular interspersed Short Palindromic Repeats-CRISPR-related (CRISPR/Cas9) is believed to have the potential to be a therapy for T1DM Patients. AIM: This research was conducted to know the potential of RNLS deletion using the CRISPR/Cas9 as an effective therapy and whether it has a permanent effect on T1DM patients. METHODS: The method applied in this research summarized articles by analyzing the titles and abstracts of various predetermined keywords. In this case, the author chose a full-text article published within the past 10 years by prioritizing searches in the last 5 years through PubMed, Google Scholar, Science Direct, Cochrane, American Diabetes Association, and official guidelines from IDAI. RESULTS: RNLS deletion using CRISPR/Cas9 in mice weakened the response of polyclonal -cell-reactive CD8+ T cells and disrupted the immune recognition to cells so that autoimmune killing did occur. In addition, such deletion prevents RNLS ER stress by increasing the threshold, triggering the unfolded protein response so that ER stress is difficult to occur. RNLS mutations in b cells also increase b cell survivability to oxidative stress. CONCLUSION: b cells RNLS deletion by genome editing CRISPR/Cas9 is effective in protecting b cells from autoimmune reactions and RE stress. However, further research is needed to determine the side effects and safety of its use.


2021 ◽  
pp. 247255522110383
Author(s):  
Gurmeet Kaur ◽  
David M. Evans ◽  
Beverly A. Teicher ◽  
Nathan P. Coussens

Malignant tumors are complex tissues composed of malignant cells, vascular cells, structural mesenchymal cells including pericytes and carcinoma-associated fibroblasts, infiltrating immune cells, and others, collectively called the tumor stroma. The number of stromal cells in a tumor is often much greater than the number of malignant cells. The physical associations among all these cell types are critical to tumor growth, survival, and response to therapy. Most cell-based screens for cancer drug discovery and precision medicine validation use malignant cells in isolation as monolayers, embedded in a matrix, or as spheroids in suspension. Medium- and high-throughput screening with multiple cell lines requires a scalable, reproducible, robust cell-based assay. Complex spheroids include malignant cells and two normal cell types, human umbilical vein endothelial cells and highly plastic mesenchymal stem cells, which rapidly adapt to the malignant cell microenvironment. The patient-derived pancreatic adenocarcinoma cell line, K24384-001-R, was used to explore complex spheroid structure and response to anticancer agents in a 96-well format. We describe the development of the complex spheroid assay as well as the growth and structure of complex spheroids over time. Subsequently, we demonstrate successful assay miniaturization to a 384-well format and robust performance in a high-throughput screen. Implementation of the complex spheroid assay was further demonstrated with 10 well-established pancreatic cell lines. By incorporating both human stromal and tumor components, complex spheroids might provide an improved model for tumor response in vivo.


Sign in / Sign up

Export Citation Format

Share Document