Diversity of HIV-1 subtypes and transmitted drug-resistance mutations among minority HIV-1 variants in a Turkish cohort

2021 ◽  
Vol 19 ◽  
Author(s):  
Rabia Can Sarinoglu ◽  
Uluhan Sili ◽  
Ufuk Hasdemir ◽  
Burak Aksu ◽  
Guner Soyletir ◽  
...  

Background: The World Health Organization (WHO) recommends the surveillance of transmitted drug resistance mutations (TDRMs) to ensure the effectiveness and sustainability of HIV treatment programs. Objective: Our aim was to determine the TDRMs and evaluate the distribution of HIV-1 subtypes using and compared next-generation sequencing (NGS) and Sanger-based sequencing (SBS) in a cohort of 44 antiretroviral treatment-naïve patients. Methods: All samples that were referred to the microbiology laboratory for HIV drug resistance analysis between December 2016 and February 2018 were included in the study. After exclusions, 44 treatment-naive adult patients with a viral load of >1000 copies/mL were analyzed. DNA sequencing for reverse transcriptase and protease regions was performed using both DeepChek ABL single round kit and Sanger-based ViroSeq HIV-1 Genotyping System. The mutations and HIV-1 subtypes were analyzed using the Stanford HIVdb version 8.6.1 Genotypic Resistance software, and TDRMs were assessed using the WHO surveillance drug-resistance mutation database. HIV-1 subtypes were confirmed by constructing a maximum-likelihood phylogenetic tree using Los Alamos IQ-Tree software. Results: NGS identified nucleos(t)ide reverse transcriptase inhibitor (NRTI)-TDRMs in 9.1% of the patients, non-nucleos(t)ide reverse transcriptase inhibitor (NNRTI)-TDRMs in 6.8% of the patients, and protease inhibitor (PI)-TDRMs in 18.2% of the patients at a detection threshold of ≥1%. Using SBS, 2.3% and 6.8% of the patients were found to have NRTI- and NNRTI-TDRMs, respectively, but no major PI mutations were detected. M41L, L74I, K65R, M184V, and M184I related to NRTI, K103N to NNRTI, and N83D, M46I, I84V, V82A, L24I, L90M, I54V to the PI sites were identified using NGS. Most mutations were found in low-abundance (frequency range: 1.0% - 4.7%) HIV-1 variants, except M41L and K103N. The subtypes of the isolates were found as follows; 61.4% subtype B, 18.2% subtype B/CRF02_AG recombinant, 13.6% subtype A, 4.5% CRF43_02G, and 2.3% CRF02_AG. All TDRMs, except K65R, were detected in HIV-1 subtype B isolates.. Conclusion: The high diversity of protease site TDRMs in the minority HIV-1 variants and prevalence of CRFs were remarkable in this study. All minority HIV-1 variants were missed by conventional sequencing. TDRM prevalence among minority variants appears to be decreasing over time at our center.

2019 ◽  
Vol 11 (2) ◽  
pp. 75-83 ◽  
Author(s):  
A. A. Kirichenko ◽  
D. E. Kireev ◽  
A. E. Lopatukhin ◽  
A. V. Murzakova ◽  
I. A. Lapovok ◽  
...  

Aim: to analyze the prevalence, structure of drug resistance and drug resistance mutations in the protease and reverse transcriptase genes of HIV-1 among treatment naïve patients.Materials and methods. We analyzed protease and reverse transcriptase sequences from 1560 treatment naïve HIV-infected patients from all Federal Districts of the Russian Federation with the first positive immune blot during 1998–2017. Sequences were analyzed for the presence of drug resistance mutations and predicted drug resistance to antiretroviral drugs using two algorithms — Stanford HIVDR Database (HIVdb) and the 2009 SDRM list (CPR).Results. The prevalence of drug resistance mutations was 11,1%. More often the prevalence of drug resistance was found for non-nucleoside reverse transcriptase inhibitor drugs (rilpivirine, nevirapine, efavirenz). The prevalence of transmitted drug resistance associated with mutations from the SDRM list was 5,3%, which is classified by the WHO as a moderate level. However, it should be noted that since the large-scale use of antiretroviral drugs in the Russian Federation, there has been a trend towards a gradual increase in the level of the transmitted drug resistance, and in 2016 it has already reached 6,1%.Conclusion. The results demonstrate the need for regular surveillance of the prevalence of HIV drug resistance to antiretroviral drugs among treatment naïve patients in the Russian Federation.


2011 ◽  
Vol 55 (5) ◽  
pp. 2146-2153 ◽  
Author(s):  
Kimberly L. Armstrong ◽  
Tun-Hou Lee ◽  
M. Essex

ABSTRACTSingle-dose nevirapine (NVP) is quite effective in preventing transmission of the human immunodeficiency virus (HIV) from mother to child; however, many women develop resistance to NVP in this setting. Comparing outcomes of clinical studies reveals an increased amount of resistance in subtype C relative to that in other subtypes. This study investigates how nonnucleoside reverse transcriptase inhibitor (NNRTI) drug resistance mutations of subtype C affect replication capacity. The 103N, 106A, 106M, 181C, 188C, 188L, and 190A drug resistance mutations were placed in a reverse transcriptase (RT) that matches the consensus subtype C sequence as well as the HXB2 RT, as a subtype B reference. The replicative fitness of each mutant was compared with that of the wild type in a head-to-head competition assay. The 106A mutant of subtype C would not grow in the competition assay, making it the weakest virus tested. The effect of the 106M mutation was weaker than those of the 181C and 188C mutations in the consensus C RT, but in subtype B, this difference was not seen. To see if the 106A mutation in a different subtype C background would have a different replicative profile, the same NNRTI resistance mutations were added to the MJ4 RT, a reference subtype C molecular clone. In the context of MJ4 RT, the 106A mutant was not the only mutant that showed poor replicative fitness; the 106M, 188C, and 190A mutants also failed to replicate. These results suggest that NNRTIs may be a cost-effective alternative for salvage therapy if deleterious mutations are present in a subtype C setting.


2020 ◽  
Author(s):  
Billal Musah Obeng ◽  
Evelyn Yayra Bonney ◽  
Lucy Asamoah-Akuoko ◽  
Nicholas Israel Nii-Trebi ◽  
Gifty Mawuli ◽  
...  

Abstract Background: Detection of HIV-1 transmitted drug resistance (TDR) and subtype diversity (SD) are public health strategies to assess current HIV-1 regimen and ensure effective therapeutic outcomes of ART among HIV-1 patients. Globally, limited data exist on TDR and SD among blood donors. In this study, drug resistance mutations and subtype diversity among HIV-1 sero-positive blood donors in Accra, Ghana was characterized.Methods: Purposive sampling method was used to collect 81 HIV sero-positive blood samples from the Southern Area Blood Center and confirmed by serology as HIV-1 and/or HIV-2. Viral RNA was only extracted from plasma samples confirmed as HIV-1 positive. Complementary DNA (cDNA) was synthesized using the RNA as a template and subsequently amplified by nested PCR with specific primers. The expected products were verified, purified and sequenced. Neighbor-joining tree with the Kimura’s 2-parameter distances was generated with the RT sequences using Molecular Evolutionary Genetic Analysis version 6.0 (MEGA 6.0).Results: Out of the 81 plasma samples, 60 (74%) were confirmed as HIV-1 sero-positive by INNO-LIA HIVI/II Score kit with no HIV-2 and dual HIV-1/2 infections. The remaining samples, 21 (26%) were confirmed as HIV sero-negative. Of the 60 confirmed positive samples, (32) 53% and (28) 50% were successfully amplified in the RT and PR genes respectively. Nucleotide sequencing of amplified samples revealed the presence of major drug resistance mutations in two (2) samples; E138A in one sample and another with K65R. HIV-1 Subtypes including subtypes A, B, CRF02_AG and CRF09_cpx were found. Conclusion: This study found major drug resistance mutations, E138A and K65R in the RT gene that confer high level resistance to most NNRTIs and NRTI respectively. CRF02_AG was most predominant, the recorded percentage of subtype B and the evolutionary relationship inferred by phylogenetic analysis suggest possible subtype importation. The data obtained would inform the selection of drugs for ART initiation to maximize therapeutic options in drug-naïve HIV-1 patients in Ghana.


2015 ◽  
Vol 43 (6) ◽  
pp. 3256-3271 ◽  
Author(s):  
Sushama Telwatte ◽  
Anna C. Hearps ◽  
Adam Johnson ◽  
Catherine F. Latham ◽  
Katie Moore ◽  
...  

Viruses ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 268 ◽  
Author(s):  
Victor Pimentel ◽  
Marta Pingarilho ◽  
Daniela Alves ◽  
Isabel Diogo ◽  
Sandra Fernandes ◽  
...  

Migration is associated with HIV-1 vulnerability. Objectives: To identify long-term trends in HIV-1 molecular epidemiology and antiretroviral drug resistance (ARV) among migrants followed up in Portugal Methods: 5177 patients were included between 2001 and 2017. Rega, Scuel, Comet, and jPHMM algorithms were used for subtyping. Transmitted drug resistance (TDR) and Acquired drug resistance (ADR) were defined as the presence of surveillance drug resistance mutations (SDRMs) and as mutations of the IAS-USA 2015 algorithm, respectively. Statistical analyses were performed. Results: HIV-1 subtypes infecting migrants were consistent with the ones prevailing in their countries of origin. Over time, overall TDR significantly increased and specifically for Non-nucleoside reverse transcriptase inhibitor (NNRTIs) and Nucleoside reverse transcriptase inhibitor (NRTIs). TDR was higher in patients from Mozambique. Country of origin Mozambique and subtype B were independently associated with TDR. Overall, ADR significantly decreased over time and specifically for NRTIs and Protease Inhibitors (PIs). Age, subtype B, and viral load were independently associated with ADR. Conclusions: HIV-1 molecular epidemiology in migrants suggests high levels of connectivity with their country of origin. The increasing levels of TDR in migrants could indicate an increase also in their countries of origin, where more efficient surveillance should occur.


2020 ◽  
Author(s):  
Billal Musah Obeng ◽  
Evelyn Yayra Bonney ◽  
Lucy Asamoah-Akuoko ◽  
Nicholas Israel Nii-Trebi ◽  
Gifty Mawuli ◽  
...  

Abstract Background: Detection of HIV-1 transmitted drug resistance (TDR) and subtype diversity (SD) are public health strategies to assess current HIV-1 regimen and ensure effective therapeutic outcomes of antiretroviral therapy (ART) among HIV-1 patients. Globally, limited data exist on TDR and SD among blood donors. In this study, drug resistance mutations (DRMs) and SD amongst HIV-1 sero-positive blood donors in Accra, Ghana were characterized.Methods: Purposive sampling method was used to collect 81 HIV sero-positive blood samples from the Southern Area Blood Center and confirmed by INNO-LIA as HIV-1 and/or HIV-2. Viral RNA was only extracted from plasma samples confirmed as HIV-1 positive. Complementary DNA (cDNA) was synthesized using the RNA as a template and subsequently amplified by nested PCR with specific primers. The expected products were verified, purified and sequenced. Neighbour-joining tree with the Kimura’s 2-parameter distances was generated with the RT sequences using Molecular Evolutionary Genetic Analysis version 6.0 (MEGA 6.0).Results: Out of the 81 plasma samples, 60 (74%) were confirmed as HIV-1 sero-positive by INNO-LIA HIVI/II Score kit with no HIV-2 and dual HIV-1/2 infections. The remaining samples, 21 (26%) were confirmed as HIV sero-negative. Of the 60 confirmed positive samples, (32) 53% and (28) 47% were successfully amplified in the RT and PR genes respectively. Nucleotide sequencing of amplified samples revealed the presence of major drug resistance mutations in two (2) samples; E138A in one sample and another with K65R. HIV-1 Subtypes including subtypes A, B, CRF02_AG and CRF09_cpx were found. Conclusion: This study found major drug resistance mutations, E138A and K65R in the RT gene that confer high level resistance to most NNRTIs and NRTI respectively. CRF02_AG was most predominant, the recorded percentage of subtype B and the evolutionary relationship inferred by phylogenetic analysis may suggest possible subtype importation. However, a more prospective and detailed analysis is needed to establish this phenomenon. The data obtained would inform the selection of drugs for ART initiation to maximize therapeutic options in drug-naïve HIV-1 patients in Ghana.


Sign in / Sign up

Export Citation Format

Share Document