Synthesis of 1-substituted Tetrazoles Using CoFe2O4 Nanoparticles as a Magnetically Recoverable and Reusable Catalyst

2013 ◽  
Vol 10 (7) ◽  
pp. 527-531 ◽  
Author(s):  
Siavash Bahari
2020 ◽  
Vol 65 (10) ◽  
pp. 904
Author(s):  
V. O. Zamorskyi ◽  
Ya. M. Lytvynenko ◽  
A. M. Pogorily ◽  
A. I. Tovstolytkin ◽  
S. O. Solopan ◽  
...  

Magnetic properties of the sets of Fe3O4(core)/CoFe2O4(shell) composite nanoparticles with a core diameter of about 6.3 nm and various shell thicknesses (0, 1.0, and 2.5 nm), as well as the mixtures of Fe3O4 and CoFe2O4 nanoparticles taken in the ratios corresponding to the core/shell material contents in the former case, have been studied. The results of magnetic research showed that the coating of magnetic nanoparticles with a shell gives rise to the appearance of two simultaneous effects: the modification of the core/shell interface parameters and the parameter change in both the nanoparticle’s core and shell themselves. As a result, the core/shell particles acquire new characteristics that are inherent neither to Fe3O4 nor to CoFe2O4. The obtained results open the way to the optimization and adaptation of the parameters of the core/shell spinel-ferrite-based nanoparticles for their application in various technological and biomedical domains.


2007 ◽  
Vol 4 (7) ◽  
pp. 524-529 ◽  
Author(s):  
Elaheh Mosaddegh ◽  
Mohammad Islami ◽  
Asadollah Hassankhani

2020 ◽  
Vol 17 ◽  
Author(s):  
Rahele Bargebid ◽  
Ali Khalafi-Nezhad ◽  
Kamiar Zomorodian ◽  
Leila Zamani ◽  
Ali Ahmadinejad ◽  
...  

Introduction: Mannich reaction is a typical example of a three-component condensation reaction and the chemistry of Mannich bases has been the matter of search by researchers. Here an efficient procedure for the synthesis of some new Mannich derivatives of simple phenols is described. Methods: In this procedure a microwave-assisted and solvent less condensation were done between different phenols, secondary amines and paraformaldehyde. The reactions proceed in the presence of catalytic amount of nano ZnO and tetrabutylammonium bromide (TBAB) in excellent yields. 10 new compounds were synthesized (A1-A10). Chemical structures of all new compounds were confirmed by different spectroscopic methods. We optimized the chemical reactions in different conditions. Optimization reactions were done in the presence of different mineral oxides, different amount of TBAB and also different solvents. Nano ZnO and TBAB in catalytic amounts and solvent free conditions were the best conditions. All the synthesized compounds were screened for their antimicrobial activities. Antifungal and antibacterial activities of the synthesized compounds were evaluated against some Candida, filaments fungi, gram positive and gram negative bacteria by broth micro dilution method as recommended by CLSI. Results: The result showed that compounds A2, A3 and A4 against most of the tested Candida species and compounds A5 and A7 against C. parapsilosis and C. tropicalis, exhibited considerable antifungal activities. Also Compounds A8 and A10 showed desirable antifungal activities against C. neoformance and C. parapsilosis, respectively. The antibacterial activities of the synthesized compounds were also evaluated. Compounds A6 - A10 against E. Fecalis and compounds A5, A7, A9 and A10 against P. aeruginosa showed desirable antibacterial activities. Discussion: We have synthesized some new Mannich adducts of poly-hydroxyl phenols in the presence of nano-ZnO as a reusable catalyst, with the hope of discovering new lead compounds serving as potent antimicrobial agents. The advantages of this method are generality, high yields with short reaction times, simplicity, low cost and matching with green chemistry protocols. The antimicriobial studies of Mannich derivatives of phenols showed desirable results in vitro.


2019 ◽  
Vol 2 (12) ◽  
pp. 5653-5662 ◽  
Author(s):  
Stephen Williams ◽  
Chigozie L. Okolie ◽  
Jay Deshmukh ◽  
Lindsay Hawco ◽  
James McNeil ◽  
...  

ACS Omega ◽  
2020 ◽  
Vol 5 (31) ◽  
pp. 19315-19330 ◽  
Author(s):  
Sumayya M. Ansari ◽  
Kartik C. Ghosh ◽  
Rupesh S. Devan ◽  
Debasis Sen ◽  
Pulya U. Sastry ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document