hydrogen sulfate
Recently Published Documents


TOTAL DOCUMENTS

711
(FIVE YEARS 100)

H-INDEX

42
(FIVE YEARS 7)

2022 ◽  
Author(s):  
Janusz Nowicki ◽  
Ewa Nowakowska-Bogdan

A series of functionalized hydrogen sulfate imidazolium ILs were synthesized and applied as catalysts in the reaction of glucose, xylose and fructose with ethanol. In research, the unexpected selectivity phenomena...


Catalysts ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1552
Author(s):  
Derun Hua ◽  
Hao Ding ◽  
Yunfeng Liu ◽  
Jian Li ◽  
Baojun Han

An environmentally friendly catalyst and task-specific ionic liquid (IL), 1-(4-sulfonic acid) butyl-3-cetyl-2-methyl imidazolium hydrogen sulfate, was applied to the dehydration of xylose to furfural. Its structure was determined by FT-IR, 1H NMR technologies. The solubility of IL in water changed with the temperature, and had the advantages of homogeneous and heterogeneous catalysts. At the given conditions, xylose conversion of 95.3% and furfural yield of 67.5% were achieved over IL.


Author(s):  
Priyanka Kalal ◽  
Ayushi Sethiya ◽  
Jay Soni ◽  
Isha Patel ◽  
Divyani Gandhi ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ryoya Ito ◽  
Hisashi Miyafuji

AbstractProduction of 5-hydroxymethylfurfural (5-HMF) from Japanese cedar (Cryptomeria japonica) using an ionic liquid, 1-methylimidazolium hydrogen sulfate ([MIM]HSO4), was investigated. 5-HMF can be produced from C. japonica at temperatures above 120 °C. The maximum yield of 5-HMF was about 9 wt% after 15 min of treatment at 160 °C. However, 5-HMF produced in this process tended to decompose as the treatment continued. To avoid decomposition and to provide a means of recovering 5-HMF from [MIM]HSO4, three reaction systems based on [MIM]HSO4 were investigated: biphasic [MIM]HSO4/organic solvent system, [MIM]HSO4 with vacuum distillation, and [MIM]HSO4 with vacuum steam distillation. The [MIM]HSO4 reaction system combined with vacuum steam distillation was most effective. The maximum yield of 5-HMF was 17.5 wt% after treatment for 45 min at 160 °C. The combination of [MIM]HSO4 treatment with vacuum steam distillation is suitable for 5-HMF production because it is a one-pot process without the need for catalysts or pretreatment.


Author(s):  
H. R. Rajegowda ◽  
P. A. Suchetan ◽  
R. J. Butcher ◽  
P. Raghavendra Kumar

A hydrogen sulfate salt, C15H18NSe+·HSO4 −·H2O or [BnSeCH2CH(Ph)NH3 +](HSO4 −), of a chiral selenated amine (R)-2-(benzylselanyl)-1-phenylethanamine (BnSeCH2CH(Ph)NH2) has been synthesized and characterized by elemental analysis,1H and 13C{1H} NMR, FT–IR analysis, and single-crystal X-ray diffraction studies. The title salt crystallizes in the monohydrate form in the non-centrosymmetric monoclinic P21 space group. The cation is somewhat W shaped with the dihedral angle between the two aromatic rings being 60.9 (4)°. The carbon atom attached to the amine nitrogen atom is chiral and in the R configuration, and, the –C—C– bond of the –CH2—CH– fragment has a staggered conformation. In the crystal structure, two HSO4 − anions and two water molecules form an R 4 4(12) tetrameric type of assembly comprised of alternating HSO4 − anions and water molecules via discrete D(2) O—H...O hydrogen bonds. This tetrameric assembly aggregates along the b-axis direction as an infinite one-dimensional tape. Adjacent tapes are interconnected via discrete D(2) N—H...O hydrogen bonds between the three amino hydrogen atoms of the cation sandwiched between the two tapes and the three HSO4 − anions of the nearest asymmetric units, resulting in a complex two-dimensional sheet along the ab plane. The pendant arrangement of the cations is stabilized by C—H...π interactions between adjacent cations running as chains down the [010] axis. Secondary Se...O [3.1474 (4) Å] interactions are also observed in the crystal structure. A Hirshfeld surface analysis, including d norm, shape-index and fingerprint plots of the cation, anion and solvent molecule, was carried out to confirm the presence of various interactions in the crystal structure.


Chemosensors ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 287
Author(s):  
Sanchita Kundu ◽  
Tochukwu Kevin Egboluche ◽  
Zehra Yousuf ◽  
Md. Alamgir Hossain

A new simple urea-based dipodal molecular cleft (L) has been synthesized and studied for its binding affinity for a variety of anions by 1H-NMR, UV-Vis and colorimetric techniques in DMSO-d6 and DMSO, respectively. The results from titration studies suggest that the receptor forms a 1:2 complex with each of the anions used via hydrogen bonding interactions and exhibits strong selectivity for fluoride among halides, showing the binding affinity in the order of fluoride > chloride > bromide > iodide; meanwhile, it displays moderate selectivity for acetate among oxoanions, showing the binding affinity in the order of acetate > dihydrogen phosphate > bicarbonate > hydrogen sulfate > nitrate. Colorimetric studies of L for anions in DMSO reveal that the receptor is capable of detecting fluoride, acetate, bicarbonate and dihydrogen phosphate, displaying a visible color change in the presence of the respective anions.


Sign in / Sign up

Export Citation Format

Share Document