Nanoreactors Technology in Green Organic Synthesis

2017 ◽  
Vol 14 (6) ◽  
pp. 810-864 ◽  
Author(s):  
Hamideh Aghahosseini ◽  
Ali Ramazani ◽  
Farideh Gouranlou ◽  
Sang Woo Joo

Background: Nanoreactors technology represents a promising tool for efficient and selective organic synthesis typically under “green” and sustainable reaction conditions. These structures with generating a confined reaction environment to accommodate that both reactants and catalysts can change the reaction pathways and induce new activities and selectivities. Objective: The paper reviews literature examples in which nanoreactors were employed in various types of organic and metal catalyzed reactions including multicomponent reactions, palladium-catalyzed coupling reactions, olefin metathesis, aza-Cope rearrangement, allylic alcohol isomerization, cyclization reactions, ring opening reactions, halogenation reactions, hydrolysis reactions, hydroformylation reactions, cascade reactions, addition reactions, oxidation reactions and reduction reactions. The reactions' survey is accompanied with the explanation of structure and performance of nanoreactors that are applied there. Conclusion: The availability of comprehensive information about the role of nanoreactors technology in green organic synthesis and investigation of different aspects of them such as their structures, mechanisms and synthetic utility can assist researchers in designing the greener approaches in organic synthesis.

2021 ◽  
Author(s):  
Jay Soni ◽  
Pankaj Teli ◽  
Nusrat Sahiba ◽  
Ayushi Sethiya ◽  
Shikha Agarwal

Oxidation of alkenes is an important reaction in academia, industry and science as it is used to develop epoxides, carbonyls, allylic compounds, 1,2-diols, etc. Metal catalyzed oxidation of alkenes has aroused as a significant tool in modern organic synthesis. Several techniques are available; however some of them suffer from few shortcomings viz. high cost, toxic nature, harsh reaction condition, solid waste generation, etc. In view of these drawbacks, green oxidants i.e. O2, H2O2, TBHP, etc. have shown noteworthy prospects due to their nature, low cost, high atom economy and high sustainability in metal catalyzed reactions. This chapter highlights the metal catalyzed green oxidation of alkenes and shall provide new strategies for the functionalization and transformation of alkenes.


2020 ◽  
Vol 24 (3) ◽  
pp. 231-264 ◽  
Author(s):  
Kevin H. Shaughnessy

Phosphines are widely used ligands in transition metal-catalyzed reactions. Arylphosphines, such as triphenylphosphine, were among the first phosphines to show broad utility in catalysis. Beginning in the late 1990s, sterically demanding and electronrich trialkylphosphines began to receive attention as supporting ligands. These ligands were found to be particularly effective at promoting oxidative addition in cross-coupling of aryl halides. With electron-rich, sterically demanding ligands, such as tri-tertbutylphosphine, coupling of aryl bromides could be achieved at room temperature. More importantly, the less reactive, but more broadly available, aryl chlorides became accessible substrates. Tri-tert-butylphosphine has become a privileged ligand that has found application in a wide range of late transition-metal catalyzed coupling reactions. This success has led to the use of numerous monodentate trialkylphosphines in cross-coupling reactions. This review will discuss the general properties and features of monodentate trialkylphosphines and their application in cross-coupling reactions of C–X and C–H bonds.


Synthesis ◽  
2018 ◽  
Vol 51 (06) ◽  
pp. 1342-1352 ◽  
Author(s):  
Javier Izquierdo ◽  
Atul Jain ◽  
Sarki Abdulkadir ◽  
Gary Schiltz

The chromenone core is an ubiquitous group in biologically active natural products and has been extensively used in organic synthesis. Fluorine-derived compounds, including those with a trifluoromethyl group (CF3), have shown enhanced biological activities in numerous pharmaceuticals compared with their non-fluorinated analogues. 2-Trifluoromethylchromenones can be readily functionalized at the 8- and 7-positions, providing chromenones cores of high structural complexity, which are excellent precursors for numerous trifluoromethyl heterocycles.


Science ◽  
2019 ◽  
Vol 364 (6439) ◽  
pp. eaav9713 ◽  
Author(s):  
Asik Hossain ◽  
Aditya Bhattacharyya ◽  
Oliver Reiser

Visible-light photoredox catalysis offers a distinct activation mode complementary to thermal transition metal catalyzed reactions. The vast majority of photoredox processes capitalizes on precious metal ruthenium(II) or iridium(III) complexes that serve as single-electron reductants or oxidants in their photoexcited states. As a low-cost alternative, organic dyes are also frequently used but in general suffer from lower photostability. Copper-based photocatalysts are rapidly emerging, offering not only economic and ecological advantages but also otherwise inaccessible inner-sphere mechanisms, which have been successfully applied to challenging transformations. Moreover, the combination of conventional photocatalysts with copper(I) or copper(II) salts has emerged as an efficient dual catalytic system for cross-coupling reactions.


ChemInform ◽  
2010 ◽  
Vol 32 (24) ◽  
pp. no-no
Author(s):  
Joerg Storsberg ◽  
Mecheril V. Nandakumar ◽  
Sivaraman Sankaranarayanan ◽  
Dieter E. Kaufmann

Synlett ◽  
2018 ◽  
Vol 30 (02) ◽  
pp. 141-155 ◽  
Author(s):  
Luke Odell ◽  
Mats Larhed ◽  
Linda Åkerbladh

This account summarizes Pd(0)-catalyzed Mo(CO)6-mediated gas-free carbonylative reactions published in the period October 2011 to May 2018. Presented reactions include inter- and intramolecular carbonylations, carbonylative cross-couplings, and carbonylative multicomponent reactions using Mo(CO)6 as a solid source of CO. The presented methodologies were developed mainly for small-scale applications, avoiding the problematic use of gaseous CO in a standard laboratory. In most cases, the reported Mo(CO)6-mediated carbonylations were conducted in sealed vials or by using two-chamber solutions.1 Introduction2 Recent Developments2.1 New CO Sources2.2 Two-Chamber System for ex Situ CO Generation2.3 Multicomponent Carbonylations3 Carbonylations with N and O Nucleophiles4 Carbonylative Cross-Coupling Reactions with Organometallics5 Carbonylative Cascade Reactions6 Carbonylative Cascade, Multistep Reactions7 Summary and Outlook


Sign in / Sign up

Export Citation Format

Share Document