glucose analogue
Recently Published Documents


TOTAL DOCUMENTS

81
(FIVE YEARS 8)

H-INDEX

22
(FIVE YEARS 2)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Antri Georgiou ◽  
Simon Sieber ◽  
Chien-Chi Hsiao ◽  
Tatyana Grayfer ◽  
Jacob L. Gorenflos López ◽  
...  

AbstractAfter a century of investigations, the function of the obligate betaproteobacterial endosymbionts accommodated in leaf nodules of tropical Rubiaceae remained enigmatic. We report that the α-d-glucose analogue (+)-streptol, systemically supplied by mature Ca.Burkholderia kirkii nodules to their Psychotria hosts, exhibits potent and selective root growth inhibiting activity. We provide compelling evidence that (+)-streptol specifically affects meristematic root cells transitioning to anisotropic elongation by disrupting cell wall organization in a mechanism of action that is distinct from canonical cellulose biosynthesis inhibitors. We observed no inhibitory or cytotoxic effects on organisms other than seed plants, further suggesting (+)-streptol as a bona fide allelochemical. We propose that the suppression of growth of plant competitors is a major driver of the formation and maintenance of the Psychotria–Burkholderia association. In addition to potential agricultural applications as a herbicidal agent, (+)-streptol might also prove useful to dissect plant cell and organ growth processes.


Human Cell ◽  
2021 ◽  
Vol 34 (2) ◽  
pp. 634-643
Author(s):  
Tetsuya Ogawa ◽  
Ayako Sasaki ◽  
Koki Ono ◽  
Shusa Ohshika ◽  
Yasuyuki Ishibashi ◽  
...  

AbstractMammalian cells take in d-glucose as an essential fuel as well as a carbon source. In contrast, l-glucose, the mirror image isomer of d-glucose, has been considered merely as a non-transportable/non-metabolizable control for d-glucose. We have shown that 2-[N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-D-glucose (2-NBDG), a d-glucose analogue combining a fluorophore NBD at the C-2 position, is useful as a tracer for monitoring d-glucose uptake through glucose transporters (GLUTs) into mammalian cells. To more precisely evaluate the stereoselectivity of 2-NBDG uptake, we developed an l-glucose analogue 2-NBDLG, the mirror-image isomer of 2-NBDG. Interestingly, 2-NBDLG was taken up into mouse insulinoma MIN6 cells showing nuclear heterogeneity, a cytological feature of malignancy, while remaining MIN6 cells only exhibited a trace amount of 2-NBDLG uptake. The 2-NBDLG uptake into MIN6 cells was abolished by phloretin, but persisted under blockade of major mammalian glucose transporters. Unfortunately, however, no such uptake could be detected in other tumor cell lines. Here we demonstrate that human osteosarcoma U2OS cells take in 2-NBDLG in a phloretin-inhibitable manner. The uptake of 2-NBDG, and not that of 2-NBDLG, into U2OS cells was significantly inhibited by cytochalasin B, a potent GLUT inhibitor. Phloretin, but neither phlorizin, an inhibitor of sodium-glucose cotransporter (SGLT), nor a large amount of d/l-glucose, blocked the 2-NBDLG uptake. These results suggest that a phloretin-inhibitable, non-GLUT/non-SGLT, possibly non-transporter-mediated yet unidentified mechanism participates in the uptake of the fluorescent l-glucose analogue in two very different tumor cells, the mouse insulinoma and the human osteosarcoma cells.


2020 ◽  
Vol 106 (4) ◽  
pp. 325-332 ◽  
Author(s):  
Maura Scarlattei ◽  
Giorgio Baldari ◽  
Mario Silva ◽  
Stefano Bola ◽  
Antonino Sammartano ◽  
...  

Introduction: In January 2020, the coronavirus disease 2019 (COVID-19) outbreak in Italy necessitated rigorous application of more restrictive safety procedures in the management and treatment of patients with cancer to ensure patient and staff protection. Identification of respiratory syndrome coronavirus 2 (SARS-CoV-2) infection was a challenge during the pandemic owing to a large number of asymptomatic or mildly symptomatic patients. Methods: We report 5 patients with unknown SARS-CoV-2 infection undergoing positron emission tomography (PET)/computed tomography (CT) with radiopharmaceuticals targeting different tumor processes: 18F-FDG, 18F-choline (FCH), and 68Ga-PSMA. Results: In all patients, PET/CT showed increased tracer uptake in the lungs corresponding to CT findings of SARS-CoV-2 pneumonia. Quantitative assessment of tracer uptake showed more elevated values for the glucose analogue 18F-FDG (mean SUVmax 5.4) than for the other tracers (mean SUVmax 3.5). Conclusions: Our findings suggest that PET/CT is a sensitive modality to hypothesize SARS-CoV-2 pneumonia in patients with cancer, even when asymptomatic. More data are needed to verify the correlation among immune response to SARS-CoV-2 infection, clinical evolution, and PET results. Under the strict safety measures implemented at the PET center, the number of potentially SARS-CoV-2–positive patients undergoing PET/CT was very low (1.6%), and no staff member has been diagnosed with infection as of April 30, 2020.


Author(s):  
Austin F. Dunn ◽  
Megan A. Catterton ◽  
Drake D. Dixon ◽  
Rebecca R. Pompano

ABSTRACTHighly proliferative cells depend heavily on glycolysis as a source of energy and biological precursor molecules, and glucose uptake is a useful readout of this aspect of metabolic activity. Glucose uptake is commonly quantified by using flow cytometry for cell cultures and positron emission tomography for organs in vivo. However, methods to detect spatiotemporally resolved glucose uptake in intact tissues are far more limited, particularly those that can quantify changes in uptake over time in specific tissue regions and cell types. Using lymph node metabolism as a case study, we developed a novel assay of dynamic and spatially resolved glucose uptake in living tissue by combining ex vivo tissue slice culture with a fluorescent glucose analogue. Live slices of murine lymph node were treated with the glucose analogue 2-[N-(7-nitrobenz-2-oxa-1,3-dia-xol-4-yl)amino]-2-deoxyglucose (2-NBDG). Incubation parameters were optimized to differentiate glucose uptake in activated versus naïve lymphocytes. Regional glucose uptake could be imaged at both the tissue level, by widefield microscopy, and at the cellular level, by confocal microscopy. Furthermore, the assay was readily multiplexed with live immunofluorescence labelling to generate maps of 2-NBDG uptake across tissue regions, revealing highest uptake in T cell-dense regions. The signal was predominantly intracellular and localized to lymphocytes rather than stromal cells. Finally, we demonstrated that the assay was repeatable in the same slices, and imaged the dynamic distribution of glucose uptake in response to ex vivo T cell stimulation for the first time. We anticipate that this assay will serve as a broadly applicable, user-friendly platform to quantify dynamic metabolic activities in complex tissue microenvironments.


Cancers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 869 ◽  
Author(s):  
Tashbib Khan ◽  
Yaowu He ◽  
Thomas Kryza ◽  
Brittney S. Harrington ◽  
Jennifer H. Gunter ◽  
...  

High stage and recurrent ovarian clear cell carcinoma (OCC) are associated with poor prognosis and resistance to chemotherapy. A distinguishing histological feature of OCC is abundant cytoplasmic stores of glucose, in the form of glycogen, that can be mobilized for cellular metabolism. Here, we report the effect on preclinical models of OCC of disrupting glycogen utilization using the glucose analogue 2-deoxy-D-glucose (2DG). At concentrations significantly lower than previously reported for other cancers, 2DG markedly improves the efficacy in vitro of carboplatin chemotherapy against chemo-sensitive TOV21G and chemo-resistant OVTOKO OCC cell lines, and this is accompanied by the depletion of glycogen. Of note, 2DG doses—of more than 10-fold lower than previously reported for other cancers—significantly improve the efficacy of carboplatin against cell line and patient-derived xenograft models in mice that mimic the chemo-responsiveness of OCC. These findings are encouraging, in that 2DG doses, which are substantially lower than previously reported to cause adverse events in cancer patients, can safely and significantly improve the efficacy of carboplatin against OCC. Our results thus justify clinical trials to evaluate whether low dose 2DG improves the efficacy of carboplatin in OCC patients.


2019 ◽  
Author(s):  
Sarbjit Nijjar ◽  
Daniel Maddison ◽  
Louise Meigh ◽  
Elizabeth de Wolf ◽  
Thomas Rodgers ◽  
...  

SummaryCx26 hemichannels open in response to moderate elevations of CO2 (PCO2 55 mmHg) via a carbamylation reaction that depends on residues K125 and R104. Here we investigate the action of CO2 on Cx26 gap junctions. Using a dye transfer assay, we found that an elevated PCO2 of 55 mmHg greatly delayed the permeation of a fluorescent glucose analogue (NBDG) between HeLa cells coupled by Cx26 gap junctions. However, the mutations K125R or R104A abolished this effect of CO2. Whole cell recordings demonstrated that elevated CO2 reduced the Cx26 gap junction conductance (median reduction 5.6 nS, 95% confidence interval, 3.2 to 11.9 nS) but had no effect on Cx26K125R or Cx31 gap junctions. CO2 can cause intracellular acidification, but using 30 mM propionate we found that acidification in the absence of a change in PCO2 caused a median reduction in the gap junction conductance of 5.3 nS (2.8 to 8.3 nS). This effect of propionate was unaffected by the K125R mutation (median reduction 7.7 nS, 4.1 to 11.0 nS). pH-dependent and CO2-dependent closure of the gap junction are thus mechanistically independent. Mutations of Cx26 associated with the Keratitis Ichthyosis Deafness syndrome (N14K, A40V and A88V) also abolished the CO2-dependent gap junction closure. Elastic network modelling suggests that the lowest entropy state when CO2 is bound, is the closed configuration for the gap junction but the open state for the hemichannel. The opposing actions of CO2 on Cx26 gap junctions and hemichannels thus depend on the same residues and presumed carbamylation reaction.


2019 ◽  
Author(s):  
Ashley Williams ◽  
Deborah Muoio ◽  
Guofang Zhang

Quantative measurements of the glucose analogue, 2-deoxyglucose (2DG), and its phosphorylated metabolite (2-deoxyglucose-6-phosphate (2DG-6-P)) are critical for the measurement of glucose uptake. While the field has long identified the need for sensitive and reliable assays that deploy non-radiolabled glucose analogues to assess glucose uptake, no analytical MS-based methods exist to detect trace amounts in complex biological samples. In the present work, we show that 2DG is poorly suited for MS-based methods due to interfering metabolites. We therefore developed and validated an alternative C18-based LC-Q-Exactive-Orbitrap-MS method using 2-fluoro-2-deoxyglucose (2FDG) to quantify both 2FDG and 2FDG-6-P by measuring the sodium adduct of 2FDG in the positive mode and deprotonation of 2FDG-6-P in the negative mode. The low detection limit of this method can reach 81.4 and 48.8 fmol for both 2FDG and 2FDG-6-P, respectively. The newly developed method was fully validated via calibration curves in the presence and absence of biological matrix. The present work is the first successful LC-MS method that can quantify trace amounts of a nonradiolabeled glucose analogue and its phosphorylated metabolite and is a promising analytical method to determine glucose uptake in biological samples.


2019 ◽  
Author(s):  
Ashley Williams ◽  
Deborah Muoio ◽  
Guofang Zhang

Quantative measurements of the glucose analogue, 2-deoxyglucose (2DG), and its phosphorylated metabolite (2-deoxyglucose-6-phosphate (2DG-6-P)) are critical for the measurement of glucose uptake. While the field has long identified the need for sensitive and reliable assays that deploy non-radiolabled glucose analogues to assess glucose uptake, no analytical MS-based methods exist to detect trace amounts in complex biological samples. In the present work, we show that 2DG is poorly suited for MS-based methods due to interfering metabolites. We therefore developed and validated an alternative C18-based LC-Q-Exactive-Orbitrap-MS method using 2-fluoro-2-deoxyglucose (2FDG) to quantify both 2FDG and 2FDG-6-P by measuring the sodium adduct of 2FDG in the positive mode and deprotonation of 2FDG-6-P in the negative mode. The low detection limit of this method can reach 81.4 and 48.8 fmol for both 2FDG and 2FDG-6-P, respectively. The newly developed method was fully validated via calibration curves in the presence and absence of biological matrix. The present work is the first successful LC-MS method that can quantify trace amounts of a nonradiolabeled glucose analogue and its phosphorylated metabolite and is a promising analytical method to determine glucose uptake in biological samples.


2018 ◽  
Vol 4 (3) ◽  
Author(s):  
Maria Lucia Calcagni ◽  
Vanessa Feudo ◽  
Elizabeth Katherine Anna Triumbari

Positron emission tomography-computed tomography (PET-CT) is a nuclear medicine imaging technique widely used in oncology, cardiology and neurology where it’is becoming of great interest especially because of its role in the diagnosis and differential diagnosis between several pathological conditions involving the nervous system. In neurodegenerative diseases, the most used PET-CT radiopharmaceuticals are 18Fluoro-Fluorodeoxyglucose (18FFDG), a glucose analogue that is able to identify abnormalities of cerebral glucose metabolism, and amyloid-tracers (11C-PiB, 18F-Florbetapir, 18F-Flutemetamol, 18F-Florbetaben) that are able to detect presence of amyloid plaques. Depending on the specific characteristic of tracers and patient’s disease, the examination has dedicated appropriate indications that are illustrated in this article. PET-CT, with its several tracers, is an accurate tool in evaluating neurodegenerative diseases. 18F-FDG is considered a hallmark of the stage of the disease. Glucose hypometabolism in specific cerebral areas allows distinguishing different degenerative diseases. Amyloid tracers are considered the hallmark of the state of the disease. The uptake of PET-amyloids tracers reflects the cortical regional density of amyloid plaques.


Sign in / Sign up

Export Citation Format

Share Document