kidney structure
Recently Published Documents


TOTAL DOCUMENTS

97
(FIVE YEARS 11)

H-INDEX

13
(FIVE YEARS 2)

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Meng-ya Geng ◽  
Lizhuo Wang ◽  
Ying-ying Song ◽  
Jing Gu ◽  
Xin Hu ◽  
...  

AbstractThe regulation and homeostasis of autophagy are essential for maintaining organ morphology and function. As a lysosomal membrane protein, the effect of Sidt2 on kidney structure and renal autophagy is still unknown. In this study, we found that the kidneys of Sidt2−/− mice showed changes in basement membrane thickening, foot process fusion, and mitochondrial swelling, suggesting that the structure of the kidney was damaged. Increased urine protein at 24 h indicated that the kidney function was also damaged. At the same time, the absence of Sidt2 caused a decrease in the number of acidic lysosomes, a decrease in acid hydrolase activity and expression in the lysosome, and an increase of pH in the lysosome, suggesting that lysosomal function was impaired after Sidt2 deletion. The accumulation of autophagolysosomes, increased LC3-II and P62 protein levels, and decreased P62 mRNA levels indicated that the absence of the Sidt2 gene caused abnormal autophagy pathway flow. Chloroquine experiment, immunofluorescence autophagosome, and lysosome fusion assay, and Ad-mcherry-GFP-LC3B further indicated that, after Sidt2 deletion, the production of autophagosomes did not increase, but the fusion of autophagosomes and lysosomes and the degradation of autophagolysosomes were impaired. When incubating Sidt2−/− cells with the autophagy activator rapamycin, we found that it could activate autophagy, which manifested as an increase in autophagosomes, but it could not improve autophagolysosome degradation. Meanwhile, it further illustrated that the Sidt2 gene plays an important role in the smooth progress of autophagolysosome processes. In summary, the absence of the Sidt2 gene caused impaired lysosome function and a decreased number of acidic lysosomes, leading to formation and degradation disorders of the autophagolysosomes, which eventually manifested as abnormal kidney structure and function. Sidt2 is essential in maintaining the normal function of the lysosomes and the physiological stability of the kidneys.


Author(s):  
Cornelius von Morze ◽  
Galen D. Reed ◽  
Zhen J. Wang ◽  
Michael A. Ohliger ◽  
Christoffer Laustsen

AbstractExisting clinical markers for renal disease are limited. Hyperpolarized (HP) 13C MRI is based on the technology of dissolution dynamic nuclear polarization (DNP) and provides new avenues for imaging kidney structure, function, and most notably, renal metabolism, addressing some of these prior limitations. Changes in kidney structure and function associated with kidney disease can be evaluated using [13C]urea, a metabolically inert tracer. Metabolic changes can be assessed using [1-13C]pyruvate and a range of other rapidly metabolized small molecules, which mainly probe central carbon metabolism. Results from numerous preclinical studies using a variety of these probes demonstrated that this approach holds great potential for monitoring renal disease, although more work is needed to bridge intelligently into clinical studies. Here we introduce the general concept of HP 13C MRI and review the most relevant probes and applications to renal disease, including kidney cancer, diabetic nephropathy and ischemic kidney injury.This chapter is based upon work from the PARENCHIMA COST Action, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers. This introduction chapter is complemented by two separate chapters describing the experimental procedure and data analysis.


2019 ◽  
Vol 316 (6) ◽  
pp. F1227-F1235 ◽  
Author(s):  
Yu Qi Lee ◽  
Emma L. Beckett ◽  
Dean V. Sculley ◽  
Kym M. Rae ◽  
Clare E. Collins ◽  
...  

Maternal undernutrition during pregnancy is prevalent across the globe, and the origins of many chronic diseases can be traced back to in utero conditions. This systematic review considers the current evidence in animal models regarding the relationship between maternal global nutrient restriction during pregnancy and offspring kidney structure and function. CINAHL, Cochrane, EMBASE, MEDLINE, and Scopus were searched to November 2017. Preferred Reporting Items for Systematic Reviews and Meta-analysis guidelines were followed, and articles were screened by two independent reviewers. Twenty-eight studies met the inclusion criteria: 16 studies were on rats, 9 on sheep, 2 on baboons, and 1 on goats. The majority of the rat studies had maternal global nutrient restriction during pregnancy at 50% of ad libitum while restriction for sheep and baboon studies ranged from 50% to 75%. Because of the heterogeneity of outcome measures and the large variation in the age of offspring at followup, no meta-analysis was possible. Common outcome measures included kidney weight, nephron number, glomerular size, glomerular filtration rate, and creatinine clearance. To date, there have been no studies assessing kidney function in large animal models. Most studies were rated as having a high or unknown risk of bias. The current body of evidence in animals suggests that exposure to maternal global nutrient restriction during pregnancy has detrimental effects on offspring kidney structure and function, such as lower kidney weight, lower nephron endowment, larger glomerular size, and lower glomerular filtration rate. Further long-term followup of studies in large animal models investigating kidney function through to adulthood are warranted.


2019 ◽  
Vol 30 (6) ◽  
pp. 1049-1059 ◽  
Author(s):  
Helen C. Looker ◽  
Michael Mauer ◽  
Pierre-Jean Saulnier ◽  
Jennifer L. Harder ◽  
Viji Nair ◽  
...  

BackgroundIn type 1 diabetes, changes in the GFR and urine albumin-to-creatinine ratio (ACR) are related to changes in kidney structure that reflect disease progression. However, such changes have not been studied in type 2 diabetes.MethodsParticipants were American Indians with type 2 diabetes enrolled in a clinical trial of losartan versus placebo. We followed a subset who underwent kidney biopsy at the end of the 6-year trial, with annual measurements of GFR (by urinary clearance of iothalamate) and ACR. Participants had a second kidney biopsy after a mean follow-up of 9.3 years. We used quantitative morphometric analyses to evaluate both biopsy specimens.ResultsBaseline measures for 48 participants (12 men and 36 women, mean age 45.6 years) who completed the study included diabetes duration (14.6 years), GFR (156 ml/min), and ACR (15 mg/g). During follow-up, glomerular basement membrane (GBM) width, mesangial fractional volume, and ACR increased, and surface density of peripheral GBM and GFR decreased. After adjustment for sex, age, ACR, and each morphometric variable at baseline, an increase in ACR during follow-up was significantly associated with increases in GBM width, mesangial fractional volume, and mean glomerular volume, and a decrease in surface density of peripheral GBM. Decline in GFR was not associated with changes in these morphometric variables after additionally adjusting for baseline GFR.ConclusionsIn American Indians with type 2 diabetes and preserved GFR at baseline, increasing ACR reflects the progression of earlier structural glomerular lesions, whereas early GFR decline may not accurately reflect such lesions.


2019 ◽  
Vol 0 (0) ◽  
pp. 0-0
Author(s):  
Abdelmonem Hegazy ◽  
Enssaf Abd Al Hameed ◽  
Dalia El-Wafaey ◽  
Omnia Khorshed

Sign in / Sign up

Export Citation Format

Share Document