Structural and Molecular Docking Studies of 4-Benzyl-3-[(1-methylpyrrol- 2-yl)methyl]-4,5-dihydro-1H-1,2,4-triazol-5-one with Anticancer Activity

2013 ◽  
Vol 9 (3) ◽  
pp. 313-328 ◽  
Author(s):  
Agnieszka A. Kaczor ◽  
Monika Pitucha ◽  
Zbigniew Karczmarzyk ◽  
Waldemar Wysocki ◽  
Jolanta Rzymowska ◽  
...  
2021 ◽  
Vol 33 (11) ◽  
pp. 2755-2761
Author(s):  
Shaheen Sultana ◽  
P. Pandian ◽  
B. Rajkamal

The synthesis of novel indole derivatives 4a-o using a microwave assisted method via Schiff’s base and Mannich base reaction mechanism was described. Compounds 3a-c were synthesized via reaction of 2-amino benzothiazole with substituted isatin by Schiff base reaction mechanism. Also, indole derivatives 4a-o were synthesized via reaction of compounds 3a-c with substituted benzaldehydes by Mannich base reaction. The biological potentials of the newly synthesized indole derivatives were evaluated for their anthelmintic activity and in vitro anticancer activity by MTT assay. The anticancer activity results suggested that indole derivatives 4c-o have activity against MCF-7 and SKOV3 cells in comparison with doxorubicin as standard drug. Furthermore, the molecular docking studies of these novel derivatives of indole showed good agreement with the biological results when their binding pattern and affinity towards the active site of EGFR was also investigated.


RSC Advances ◽  
2015 ◽  
Vol 5 (64) ◽  
pp. 51730-51744 ◽  
Author(s):  
Kang Zheng ◽  
Liu Jiang ◽  
Yan-Tuan Li ◽  
Zhi-Yong Wu ◽  
Cui-Wei Yan

Two new dicopper(ii) complexes were synthesized and structurally characterized. The effect of substituent groups on the bridging ligands was explored theoretically and experimentally.


2020 ◽  
Vol 5 (3) ◽  
pp. 1097-1102
Author(s):  
Shailesh R. Shah ◽  
Kanubhai D. Katariya ◽  
Dushyanth Reddy

2020 ◽  
Vol 32 (5) ◽  
pp. 1151-1157 ◽  
Author(s):  
P. Raghurama Shetty ◽  
G. Shivaraja ◽  
G. Krishnaswamy ◽  
K. Pruthviraj ◽  
Vivek Chandra Mohan ◽  
...  

In this work, some 2-phenyl quinoline-4-carboxamide derivatives (5a-j) were synthesized via base catalyzed Pfitzinger reaction of isatin and acetophenone followed by C-N coupling reaction using POCl3 and assessed them for their in vitro antimicrobial and anticancer activity. The structure of newly synthesized compound were established by FT-IR, 1H & 13C NMR and Mass spectrometric analysis. The synthesized carboxamides were subjected to preliminary in vitro antibacterial activity as well as for antifungal activity. Results of antibacterial activity were compared with standard antibacterial (ciprofloxocin) and antifungal (fluconozole). Among the tested compounds, 5d, 5f and 5h exhibited promising activity with zone of inhibition ranging from 10 to 25 mm. Further, the anticancer activity determined using MTT assay against two cancer cell lines. Compounds 5b, 5d, 5f and 5h showed good anticancer activity among all the other derivatives. In order to correlate the in vitro results, in silico ADME and Molecular docking studies were carried out for (5a-j). ADME properties results showed that all the compounds obey rule of Five rule except 5a, 5e and 5g compound. Molecular docking studies of the synthesized compounds showed good binding affinity through hydrogen bond interactions with key residues on active sites as well as neighboring residues within the active site of chosen target proteins viz. antibacterial, antifungal and anticancer. Comparison of both results of in silico as well as in vitro investigation suggests that the synthesized compounds may act as potential antimicrobial as well as anticancer agents.


2020 ◽  
Vol 5 (4) ◽  
pp. 301-306
Author(s):  
Praveen Kumar ◽  
Jai Prakash Kumar ◽  
Juhi Barnwal ◽  
Ritu Singh

Novel 4-{3-[2-(2-morpholin-4-yl-ethoxy)phenyl]-5-phenyl-pyrazol- 1-yl}benzenesulfonamide (7) was synthesized and evaluated for its anti-breast cancer activity. It was prepared by cyclocondensation reaction of morpholine-substituted β-diketone, 1-[2-(2-morpholin-4-yl-ethoxy)- phenyl]-3-phenyl-propane-1,3-dione (3) with 4-hydrazinobenzenesulfonamide hydrochloride (6). Chemical structure of titled compound (7) was confirmed by FTIR, 1H & 13C NMR and HRMS spectroscoic analyses. The anticancer activity of titled compound 7 was evaluated against MCF-7 breast cancer cell line by MTT assay. Molecular docking was performed to predict its plausible binding with the estrogen receptor α(ERα) using Molecular Operating Environment 2019.0101 software. The MTT assay results showed that titled compound 7 exhibited better anticancer activity against MCF7 cells (IC50: 4.25 μM) than standard drug, 4-hydroxytamoxifen (IC50: 8.22 μM). Results of molecular docking studies were found in good agreement with the results of anticancer evaluation, as the binding score of titled compound 7 (-16.9872 kcal/mol) was lower as compared to 4-hydroxytamoxifen (-15.1112 kcal/mol). The new cationic interaction of titled compound 7 with Trp383 and hydrogen bonding interaction with Phe404 in active site of ERα made its anticancer activity better than 4-hydroxytamoxifen. Thus, 4-{3-[2-(2-morpholin-4-yl-ethoxy)phenyl]-5-phenyl-pyrazol- 1-yl}benzenesulfonamide (7) was emerged as a potent anti-breast cancer agent.


RSC Advances ◽  
2015 ◽  
Vol 5 (57) ◽  
pp. 46031-46049 ◽  
Author(s):  
Jebiti Haribabu ◽  
Kumaramangalam Jeyalakshmi ◽  
Yuvaraj Arun ◽  
Nattamai S. P. Bhuvanesh ◽  
Paramasivan Thirumalai Perumal ◽  
...  

Cytotoxic nickel(ii) complexes with an N-substituted isatin thiosemicarbazone were synthesized and their interaction with CT DNA and BSA protein was investigated, which was supported by molecular docking studies.


Sign in / Sign up

Export Citation Format

Share Document