cancer agent
Recently Published Documents


TOTAL DOCUMENTS

703
(FIVE YEARS 240)

H-INDEX

45
(FIVE YEARS 9)

2021 ◽  
Vol 17 (3) ◽  
pp. 145-151
Author(s):  
Zainab M. Alawad ◽  
Hanan L. Al-Omary

Melatonin, a hormone synthesized mainly by the pineal gland, has been found in extra-pineal organs as well. It’s known as an organizer of circadian rhythms and more recently as an anti-oxidant. In addition to its role in maintaining immunity, pathophysiology of cardiovascular and neurological diseases, and as an anti-cancer agent, evidence has demonstrated that melatonin exerts a positive impact on male and female fertility primarily through oxygen scavenging effects. In In Vitro Fertilization (IVF) programs, supplementation of melatonin may be associated with better outcomes in terms of sperm quality, oocyte quality, embryo quality and pregnancy rates. This review summarizes various actions of melatonin on the body focusing on male and female fecundity.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 241
Author(s):  
Adrianna Sławińska ◽  
Małgorzata Tyszka-Czochara ◽  
Paweł Serda ◽  
Marcin Oszajca ◽  
Małgorzata Ruggiero-Mikołajczyk ◽  
...  

Two new organic-inorganic hybrid compounds containing dicarboxylic pyridine acids have been obtained and characterized. Both compounds are potassium oxidodiperoxidomolybdates with 2,6-dicarboxylicpyridine acid or 3,5-dicarboxylicpyridine acid moieties, respectively. The chemical formula for the first one is C14H7K3Mo2N2O18 denoted as K26dcpa, the second C7H4K1Mo1N1O11.5—K35dcpa. Their crystal structures were determined using single crystal (K26dcpa) or XRPD—X-ray powder diffraction techniques (K35dcpa). The purity of the compounds was confirmed by elemental analysis. Their thermal stability was determined with the use of non-ambient XRPD. In addition, they were examined by IR spectroscopy methods and catalytic activity studies were performed for them. Catalytic tests in the Baeyer–Villiger reaction and biological activity have been performed for eight compounds: K26dcpa, K35dcpa, and six peroxidomolybdates previously obtained by our group. The anti-proliferative activity of peroxidomolybdenum compounds after 24 h of incubation was studied in vitro against three selected human tumor cell lines (SW620, LoVo, HEP G2) and normal human cells (fibroblasts). The data were expressed as IC50 values. The structure of the investigated oxodiperoxomolybdenum compounds was shown to have influence on the biological activity and catalytic properties. It has been shown that the newly-obtained compound, K35dcpa, is a very efficient catalyst in the Baeyer–Villiger reaction. The best biological activity results were obtained for Na-picO (previously obtained by us), which is a very effective anti-cancer agent towards SW 620 colorectal adenocarcinoma cells.


2021 ◽  
Author(s):  
Nikolay Avtandilyan ◽  
Hayarpi Javrushyan ◽  
Mikayel Ginovyan ◽  
Anna Karapetyan ◽  
Armen Trchounian

Abstract High expression of nitric oxide (NO)-synthase has been found in different cancers like cervical, breast, and central nervous system. NO-synthase activity inhibition has been suggested as a possible tool to prevent breast cancer. The anti-tumor therapeutic effect of L-nitro arginine methyl ester (L-NAME) in vivo remains understudied. Here we hypothesized that NOS inhibition by L-NAME has some antitumor effects on breast cancer development as it inhibits NO levels, which is a pathophysiological modulator of cell proliferation, cell cycle arrest, apoptosis, and angiogenesis. We utilized a novel anti-cancer treatment model by the administration of NO-synthase inhibitor L-NAME (30 mg/kg in a day, intraperitoneal), injected every third day for five weeks (in parallel to tumors evolution) in opposition to high activity of NOS during 7,12-dimethylbenz[a]anthracene-induced breast tumor in rats in vivo. The blood concentrations of nitrite anions, polyamines, malondialdehyde, NH4+ levels, and arginase activity decreased in DMBA+L-NAME-treated rats compared with DMBA rats. The reduction of these compounds also affects the decrease of the mortality rate of rats, tumor number, weight and volume, and the histopathological grade of breast cancer. Treatment with L-NAME showed increases in time of tumor incidence and body weight compared with DMBA-cancer rats. Therefore, the co-administration of L-NAME influences as a potent anti-cancer agent to treat breast cancer and can lead to the development of therapeutic methods for cancers in the future.


Biomedicines ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 33
Author(s):  
Hee Ra Jung ◽  
Seongman Jo ◽  
Min Jae Jeon ◽  
Hyelim Lee ◽  
Yeonjeong Chu ◽  
...  

In cancer immunotherapy, the cyclic GMP–AMP synthase–stimulator of interferon genes (STING) pathway is an attractive target for switching the tumor immunophenotype from ‘cold’ to ‘hot’ through the activation of the type I interferon response. To develop a new chemical entity for STING activator to improve cyclic GMP-AMP (cGAMP)-induced innate immune response, we identified KAS-08 via the structural modification of DW2282, which was previously reported as an anti-cancer agent with an unknown mechanism. Further investigation revealed that direct STING binding or the enhanced phosphorylation of STING and downstream effectors were responsible for DW2282-or KAS-08-mediated STING activity. Furthermore, KAS-08 was validated as an effective STING pathway activator in vitro and in vivo. The synergistic effect of cGAMP-mediated immunity and efficient anti-cancer effects successfully demonstrated the therapeutic potential of KAS-08 for combination therapy in cancer treatment.


2021 ◽  
Vol 14 (12) ◽  
pp. 1315
Author(s):  
Fatemeh Rezaei-Tazangi ◽  
Hossein Roghani-Shahraki ◽  
Mahdi Khorsand Ghaffari ◽  
Firoozeh Abolhasani Zadeh ◽  
Aynaz Boostan ◽  
...  

Ovarian cancer (OCa) is characterized as one of the common reasons for cancer-associated death in women globally. This gynecological disorder is chiefly named the “silent killer” due to lacking an association between disease manifestations in the early stages and OCa. Because of the disease recurrence and resistance to common therapies, discovering an effective therapeutic way against the disease is a challenge. According to documents, some popular herbal formulations, such as curcumin, quercetin, and resveratrol, can serve as an anti-cancer agent through different mechanisms. However, these herbal products may be accompanied by some pharmacological limitations, such as poor bioavailability, instability, and weak water solubility. On the contrary, using nano-based material, e.g., nanoparticles (NPs), micelles, liposomes, can significantly solve these limitations. Therefore, in the present study, we will summarize the anti-cancer aspects of these herbal and-nano-based herbal formulations with a focus on their mechanisms against OCa.


Life ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1414
Author(s):  
Hung-Yu Lin ◽  
Yong-Shiou Lin ◽  
Shou-Ping Shih ◽  
Sung-Bau Lee ◽  
Mohamed El-Shazly ◽  
...  

Many active substances from marine organisms are produced by symbiotic microorganisms such as bacteria, fungi, and algae. Secondary metabolites from marine actinomycetes exhibited several biological activities and provided interesting drug leads. This study reported the isolation of Lu01-M, a secondary metabolite from the marine actinomycetes Streptomyces sp., with potent anti-proliferative activity against prostate cancers. Lu01-M blocked cell proliferation with IC50 values of 1.03 ± 0.31, 2.12 ± 0.38, 1.27 ± 0.25 μg/mL in human prostate cancer PC3, DU145, and LNCaP cells, respectively. Lu01-M induced cytotoxic activity through multiple mechanisms including cell apoptosis, necroptosis, autophagy, ER stress, and inhibiting colony formation and cell migration. Lu01-M induced cell cycle arrest at the G2/M phase and DNA damage. However, the activity of autophagy induced survival response in cancer cells. Our findings suggested that Lu01-M holds the potential to be developed as an anti-cancer agent against prostate cancers.


2021 ◽  
Vol 22 (24) ◽  
pp. 13455
Author(s):  
Tae Woo Kim ◽  
Hee Gu Lee

Hypoxia is a major obstacle to gastric cancer (GC) therapy and leads to chemoresistance as GC cells are frequently exposed to the hypoxia environment. Apigenin, a flavonoid found in traditional medicine, fruits, and vegetables and an HDAC inhibitor, is a powerful anti-cancer agent against various cancer cell lines. However, detailed mechanisms involved in the treatment of GC using APG are not fully understood. In this study, we investigated the biological activity of and molecular mechanisms involved in APG-mediated treatment of GC under hypoxia. APG promoted autophagic cell death by increasing ATG5, LC3-II, and phosphorylation of AMPK and ULK1 and down-regulating p-mTOR and p62 in GC. Furthermore, our results show that APG induces autophagic cell death via the activation of the PERK signaling, indicating an endoplasmic reticulum (ER) stress response. The inhibition of ER stress suppressed APG-induced autophagy and conferred prolonged cell survival, indicating autophagic cell death. We further show that APG induces ER stress- and autophagy-related cell death through the inhibition of HIF-1α and Ezh2 under normoxia and hypoxia. Taken together, our findings indicate that APG activates autophagic cell death by inhibiting HIF-1α and Ezh2 under hypoxia conditions in GC cells.


Author(s):  
Elsye Gunawan ◽  
Enrick Kharo Etmond ◽  
Linus Yhani Chrystomo

Papua has a diversity of flora species, one of which is the Papuan Grape (Sararanga sinuosa Hemsley). It is commonly used by the Depapre community, Jayapura, as a stamina booster. This research aims to identify the secondary metabolite compounds, to test the cytotoxic activity of Papuan Grape (Sararanga sinuosa Hemsley) extract, and to determine the best concentration that inhabits the growth of Artemia salina larvae using the BSLT method. This study was conducted with the extraction stage using the maceration method by making use of 96% ethanol solvent. Subsequently, the concentration series 0, 50, 100, 150, 200, 250, 300 ppm of Papuan Grape (Sararanga sinuosa Hemsley) extract were made to test the cytotoxic activity on the mortality of Artemia salina shrimp larvae. The results showed that Alkaloids, Flavonoids, Saponins, and Tannins were compounded as secondary metabolite. An antioxidant research that had been carried out previously had LC50 of green-white fruit (12,49 ± 0,35 mg/ml), orange-red fruit (17,62 ± 3,49 mg/ml) and red fruit (12,23 ± 0,46 mg/ml). The community process one stalk of it into juice and used or consumed it two times a day. An inappropriate dose of traditional medicine usage can affect the organ system and had adverse effects in the future The result of cytotoxic research obtained the value of LC50 in ethanol extract of Papuan Grape was 140,863 ppm, and concentration of 250 ppm was the best concentration to inhibit the growth of shrimp larvae (Artemia salina L). The conclusion of this study was the ethanol extract of Papuan Grape (Sararanga sinuosa Hemsley) showed the highest cytotoxic activity and potentially become an anti-cancer agent.


2021 ◽  
Vol 12 ◽  
Author(s):  
Kunyan He ◽  
Guang-Xing Wang ◽  
Li-Nan Zhao ◽  
Xiao-Fang Cui ◽  
Xian-Bin Su ◽  
...  

Glioblastoma multiforme (GBM) is the most common and malignant brain tumor, and almost half of the patients carrying EGFR-driven tumor with PTEN deficiency are resistant to EGFR-targeted therapy. EGFR amplification and/or mutation is reported in various epithelial tumors. This series of studies aimed to identify a potent compound against EGFR-driven tumor. We screened a chemical library containing over 600 individual compounds purified from Traditional Chinese Medicine against GBM cells with EGFR amplification and found that cinobufagin, the major active ingredient of Chansu, inhibited the proliferation of EGFR amplified GBM cells and PTEN deficiency enhanced its anti-proliferation effects. Cinobufagin also strongly inhibited the proliferation of carcinoma cell lines with wild-type or mutant EGFR expression. In contrast, the compound only weakly inhibited the proliferation of cancer cells with low or without EGFR expression. Cinobufagin blocked EGFR phosphorylation and its downstream signaling, which additionally induced apoptosis and cytotoxicity in EGFR amplified cancer cells. In vivo, cinobufagin blocked EGFR signaling, inhibited cell proliferation, and elicited apoptosis, thereby suppressing tumor growth in both subcutaneous and intracranial U87MG-EGFR xenograft mouse models and increasing the median survival of nude mice bearing intracranial U87MG-EGFR tumors. Cinobufagin is a potential therapeutic agent for treating malignant glioma and other human cancers expressing EGFR.


Sign in / Sign up

Export Citation Format

Share Document