Synthesis, Cyclooxygenase-2 Inhibition, Anti-inflammatory Evaluation and Docking Study of Substituted-N-(3,4,5-trimethoxyphenyl)-benzo[d]oxazole Derivatives

2018 ◽  
Vol 14 (7) ◽  
pp. 660-673 ◽  
Author(s):  
Avneet Kaur ◽  
Sharad Wakode ◽  
Dharam P. Pathak ◽  
Vidushi Sharma ◽  
Ashok K. Shakya
Author(s):  
NATARAJAN KIRUTHIGA ◽  
THANGAVELU PRABHA ◽  
CHELLAPPA SELVINTHANUJA ◽  
KULANDAIVEL SRINIVASAN ◽  
THANGAVEL SIVAKUMAR

Objective: The inflammation and oxidative stress were related together in the generation of reactive oxygen species, which is responsible for the enhancement of inflammation associated with various chronic diseases. Methods: The aim of this study is to synthezise and characterizes the flavones (2-phenyl-1-benzopyran-4-one) derivatives and analyzed by their docking hypothetical data as an effective anti-inflammatory mediator against cyclooxygenase-2 (COX-2) enzyme. Further, the evaluation of various in vitro antioxidant and anti-inflammatory studies was carried out. Results: The 10 compounds were synthesized and characterized by ultraviolet, infrared, nuclear magnetic resonance, and mass spectroscopic techniques. The docking data results of these 10 flavones derivatives against COX-2 enzymes (Protein Data Bank ID: 3LN1) showed the binding energy ranging between −5.53 kcal/mol and −7.02 kcal/mol when compared with that of the standard diclofenac (−6.34 kcal/mol). The in vitro studies suggest that the lipophilic character of the side chain donor, along with the hydroxyl substituted flavones found to have significant half maximal inhibitory concentration values. Conclusion: Based on these in silico and in vitro evaluation results, these synthesized compounds could act as a promising inhibitor to target the COX- 2 enzyme. Hence, those compounds were effective in the management of chronic diseases by exhibits free radical scavenging and anti-inflammatory property.


2010 ◽  
Vol 9 (2) ◽  
pp. 297-302 ◽  
Author(s):  
Rahmana Emran Kartasasmita ◽  
Rina Herowati ◽  
Nuraini Harmastuti ◽  
Tutus Gusdinar

Due to their ability to inhibit cyclooxygenase-2 (COX-2), certain flavonoids show anti-inflammatory effects. Quercetin is a flavonoid suitable to be chosen as the lead compound for development of safe anti-inflammatory agent, because in addition to its anti-inflammatory effect, quercetin shows also protective effect in gastrointestinal track. The objective of this research is to study the binding modes of certain flavonoids and predict the quercetin derivatives inhibiton activity on COX-2 by means of docking method using ArgusLab 4.0.1 software. Some flavonoids (7-hydroxyflavone, apigenin, galangin, kaempferol, quercetin, naringenin and daidzein) and quercetin derivatives were used as ligands for docking study. The COX-2 structure was obtained from Brookhaven protein databank. After assigning hydrogen atoms and charges, computational docking was performed. The docking results were evaluated based on the binding energy and hydrogen bonding of  the ligands on binding site of COX-2. A curve constructed by plotting binding energy versus logarithm of IC50 of flavonoids shows a good correlation with a regression equation of log IC50 = 0.8069 ΔGbind + 9.4456 (r = 0.9226; P


2012 ◽  
Vol 8 (3) ◽  
pp. 401-408 ◽  
Author(s):  
Eva Hamade ◽  
Aida Habib ◽  
Ali Hachem ◽  
Alaa H. Hussein ◽  
Malak Abbas ◽  
...  

2019 ◽  
Vol 14 (1) ◽  
pp. 85-90
Author(s):  
Sagarika Biswas

Background: Rheumatoid Arthritis (RA) is an autoimmune disorder of symmetric synovial joints which is characterized by the chronic inflammation with 0.5-1% prevalence in developed countries. Presence of persistent inflammation is attributed to the major contribution of key inflammatory cytokine and tumour necrosis factor- alpha (TNF- &#945;). Recent drug designing studies are developing TNF-&#945; blockers to provide relief from the symptoms of the disease such as pain and inflammation. Available blockers are showing certain limitations such as it may enhance the rate of tuberculosis (TB) occurrence, lymphoma risk, cost issues and certain infections are major concern. Discussed limitations implicated a need of development of some alternative drugs which exhibit fewer side effects with low cost. Therefore, we have identified anti-inflammatory compounds in an underutilized fruit of Baccaurea sapida (B.sapida) in our previous studies. Among them quercetin have been identified as the most potent lead compound for drug designing studies of RA. </P><P> Methods: In the present article, characterization of quercetin has been carried out to check its drug likeliness and molecular docking study has been carried out between TNF- &#945; and quercetin by using AutoDock 4.2.1 software. Further, inhibitory effect of B. sapida fruit extract on RA plasma has been analysed through immunological assay ELISA. </P><P> Results: Our in-silico analysis indicated that quercetin showed non carcinogenic reaction in animal model and it may also cross the membrane barrier easily. We have studied the ten different binding poses and best binding pose of TNF-&#945; and quercetin showed -6.3 kcal/mol minimum binding energy and 23.94 &#181;M inhibitory constant. In addition to this, ELISA indicated 2.2 down regulated expression of TNF-&#945; in RA compared to control. </P><P> Conclusion: This study may further be utilized for the drug designing studies to reduce TNF-&#945; mediated inflammation in near future. This attempt may also enhance the utilization of this plant worldwide.


Sign in / Sign up

Export Citation Format

Share Document