computational docking
Recently Published Documents


TOTAL DOCUMENTS

305
(FIVE YEARS 144)

H-INDEX

26
(FIVE YEARS 5)

2022 ◽  
Vol 23 (2) ◽  
pp. 777
Author(s):  
Iris S. Teixeira ◽  
André B. Farias ◽  
Bruno A. C. Horta ◽  
Humberto M. S. Milagre ◽  
Rodrigo O. M. A. de Souza ◽  
...  

Amine transaminases (ATAs) are pyridoxal-5′-phosphate (PLP)-dependent enzymes that catalyze the transfer of an amino group from an amino donor to an aldehyde and/or ketone. In the past decade, the enzymatic reductive amination of prochiral ketones catalyzed by ATAs has attracted the attention of researchers, and more traditional chemical routes were replaced by enzymatic ones in industrial manufacturing. In the present work, the influence of the presence of an α,β-unsaturated system in a methylketone model substrate was investigated, using a set of five wild-type ATAs, the (R)-selective from Aspergillus terreus (Atr-TA) and Mycobacterium vanbaalenii (Mva-TA), the (S)-selective from Chromobacterium violaceum (Cvi-TA), Ruegeria pomeroyi (Rpo-TA), V. fluvialis (Vfl-TA) and an engineered variant of V. fluvialis (ATA-256 from Codexis). The high conversion rate (80 to 99%) and optical purity (78 to 99% ee) of both (R)- and (S)-ATAs for the substrate 1-phenyl-3-butanone, using isopropylamine (IPA) as an amino donor, were observed. However, the double bond in the α,β-position of 4-phenylbut-3-en-2-one dramatically reduced wild-type ATA reactivity, leading to conversions of <10% (without affecting the enantioselectivity). In contrast, the commercially engineered V. fluvialis variant, ATA-256, still enabled an 87% conversion, yielding a corresponding amine with >99% ee. Computational docking simulations showed the differences in orientation and intermolecular interactions in the active sites, providing insights to rationalize the observed experimental results.


2021 ◽  
Author(s):  
Zihni Onur Çalışkaner

Abstract Genome methylation is a key epigenetic mechanism in various biological events such as development, cellular differentiation, cancer progression, aging, and iPSC reprogramming. Crosstalk between DNA methylation and regulation in gene expression is employed through MBD2, known as reader of DNA methylation and suggested as a drug target. Despite its magnitude of significance and rationale of nomination, a scarcely limited number of druggable ligands has been detected so far. Hence, we screened a comprehensive compound library, and then certain of them were subjected to computational docking analysis by targeting the methylated DNA-binding domain of human MBD2. We could detect reasonable binding energies and docking residues presumably located in druggable pockets. Docking results were also validated via MD simulation and per-residue energy decomposition calculation. Drug-likeness of tested ligands was assessed through ADMET prediction in order to foresee off-target side effects for future studies. Herein, on the basis of collaborating approaches such as molecular docking, MD simulation, energy decomposition, and ADMET prediction, notably two compounds named CID3100583 and 8,8-Ethylenebistheophylline, have become prominent as novel candidates, possibly disrupting MBD2MBD–DNA interaction. Hereby, these compounds exhibit a promising usage potential in a wide range of implementations from cancer treatment to somatic cell reprogramming protocols.


2021 ◽  
Vol 12 ◽  
Author(s):  
Kaleeckal G. Harikumar ◽  
Thomas Coudrat ◽  
Aditya J. Desai ◽  
Maoqing Dong ◽  
Daniela G. Dengler ◽  
...  

Drugs useful in prevention/treatment of obesity could improve health. Cholecystokinin (CCK) is a key regulator of appetite, working through the type 1 CCK receptor (CCK1R); however, full agonists have not stimulated more weight loss than dieting. We proposed an alternate strategy to target this receptor, while reducing likelihood of side effects and/or toxicity. Positive allosteric modulators (PAMs) with minimal intrinsic agonist activity would enhance CCK action, while maintaining spatial and temporal characteristics of physiologic signaling. This could correct abnormal stimulus–activity coupling observed in a high-cholesterol environment observed in obesity. We utilized high-throughput screening to identify a molecule with this pharmacological profile and studied its basis of action. Compound 1 was a weak partial agonist, with PAM activity to enhance CCK action at CCK1R, but not CCK2R, maintained in both normal and high cholesterol. Compound 1 (10 µM) did not exhibit agonist activity or stimulate internalization of CCK1R. It enhanced CCK activity by slowing the off-rate of bound hormone, increasing its binding affinity. Computational docking of Compound 1 to CCK1R yielded plausible poses. A radioiodinatable photolabile analogue retained Compound 1 pharmacology and covalently labeled CCK1R Thr211, consistent with one proposed pose. Our study identifies a novel, selective, CCK1R PAM that binds to the receptor to enhance action of CCK-8 and CCK-58 in both normal and disease-mimicking high-cholesterol environments. This facilitates the development of compounds that target the physiologic spatial and temporal engagement of CCK1R by CCK that underpins its critical role in metabolic regulation.


2021 ◽  
Author(s):  
Roger Espinosa-Saez ◽  
Sara M. Robledo ◽  
Tatiana Pineda ◽  
Javier Murillo ◽  
Gilmar Santafé Patiño ◽  
...  

Abstract In this study, the viability of new dihydroorotate dehydrogenase and tryparedoxin peroxidase inhibitors is reported. In vitro antileishmanial activity was evaluated using a Leishmania (V) panamensis strain, and the cytotoxicity of the compounds was assessed using U-937 cells. The in vivo therapeutic response was evaluated in golden hamsters (Mesocricetus auratus) experimentally infected with L. (V) panamensis and treated with a 1% topical formulation of compounds 4a–f. On the other hand, in silico studies considering the synthesized compounds were also carried out. All of the compounds showed promising in vitro activity, with mean EC50 effective concentration values ​​ranging from 3.8 µM to 19.3 µM. Likewise, treatment with compounds 4a–f produced improvement in most of the hamsters and cured some; in particular, those treated with compounds 4b, 4c, 4d, and 4f reacted the best. Molecular dynamics (MD) simulations, computational docking, and MM/GBSA studies indicate the promising bioavailability and absorption characteristics of the studied compounds, which are expected to be orally active. In addition, the studied 2-arylquinolines are absorbable at the blood–brain barrier, but not in the gastrointestinal tract. Finally, ADMET properties suggest that these molecules can be safely used as leishmaniasis inhibitors.


2021 ◽  
Vol 43 (3) ◽  
pp. 2036-2047
Author(s):  
Jose A. Jimenez Ruiz ◽  
Cecilia Lopez Ramirez ◽  
Jose Luis Lopez-Campos

The study of the interaction between the SARS-CoV-2 spike protein and the angiotensin-converting enzyme 2 (ACE2) receptor is key to understanding binding affinity and stability. In the present report, we sought to investigate the differences between two already sequenced genome variants (Spanish and British) of SARS-CoV-2. Methods: In silico model evaluating the homology, identity and similarity in the genome sequence and the structure and alignment of the predictive spike by computational docking methods. Results: The identity results between the Spanish and British variants of the Spike protein were 28.67%. This close correspondence in the results between the Spanish and British SARS-CoV-2 variants shows that they are very similar (99.99%). The alignment obtained results in four deletions. There were 23 nucleotide substitutions also predicted which could affect the functionality of the proteins produced from this sequence. The interaction between the binding receptor domain from the spike protein and the ACE2 receptor produces some of the mutations found and, therefore, the energy of this ligand varies. However, the estimated antigenicity of the British variant is higher than its Spanish counterpart. Conclusions: Our results indicate that minimal mutations could interfere in the infectivity of the virus due to changes in the fitness between host cell recognition and interaction proteins. In particular, the N501Y substitution, situated in the RBD of the spike of the British variant, might be the reason for its extraordinary infective potential.


2021 ◽  
Author(s):  
Wei Ma ◽  
Qin Xie ◽  
Jianhang Zhang ◽  
Shiliang Li ◽  
Xiaobing Deng ◽  
...  

Abstract Docking-based virtual screening (VS process) selects ligands with potential pharmacological activities from millions of molecules using computational docking methods, which greatly could reduce the number of compounds for experimental screening, shorten the research period and save the research cost. Howerver, a majority of compouds with low docking scores could waste most of the computational resources. Herein, we report a novel and practical docking-based machine learning method called MLDDM (Machince Learning Docking-by-Docking Models). It is composed of a regression model and a classification model that simulates a classical docking by docking protocol ususally applied in many virtual screening projects. MLDDM could quickly eliminate compounds with low docking scores and the retained compounds with potential high docking scores would be examined for further real docking program. We demonstrated that MLDDM has a good ability to identify active compounds in the case studies for 10 specific protein targets. Compared to pure docking by docking based VS protocol, the VS process with MLDDM can achieve an over 120 times speed increment on average and the consistency rate with corresponding docking by docking VS protocol is above 0.8. Therefore, it would be promising to be used for examing ultra-large compound libraries in the current big data era.


Author(s):  
Ehab Al-Moubarak ◽  
Holly A. Shiels ◽  
Yihong Zhang ◽  
Chunyun Du ◽  
Oliver Hanington ◽  
...  

AbstractThe lipophilic polycyclic aromatic hydrocarbon (PAH) phenanthrene is relatively abundant in polluted air and water and can access and accumulate in human tissue. Phenanthrene has been reported to interact with cardiac ion channels in several fish species. This study was undertaken to investigate the ability of phenanthrene to interact with hERG (human Ether-à-go-go-Related Gene) encoded Kv11.1 K+ channels, which play a central role in human ventricular repolarization. Pharmacological inhibition of hERG can be proarrhythmic. Whole-cell patch clamp recordings of hERG current (IhERG) were made from HEK293 cells expressing wild-type (WT) and mutant hERG channels. WT IhERG1a was inhibited by phenanthrene with an IC50 of 17.6 ± 1.7 µM, whilst IhERG1a/1b exhibited an IC50 of 1.8 ± 0.3 µM. WT IhERG block showed marked voltage and time dependence, indicative of dependence of inhibition on channel gating. The inhibitory effect of phenanthrene was markedly impaired by the attenuated inactivation N588K mutation. Remarkably, mutations of S6 domain aromatic amino acids (Y652, F656) in the canonical drug binding site did not impair the inhibitory action of phenanthrene; the Y652A mutation augmented IhERG block. In contrast, the F557L (S5) and M651A (S6) mutations impaired the ability of phenanthrene to inhibit IhERG, as did the S624A mutation below the selectivity filter region. Computational docking using a cryo-EM derived hERG structure supported the mutagenesis data. Thus, phenanthrene acts as an inhibitor of the hERG K+ channel by directly interacting with the channel, binding to a distinct site in the channel pore domain.


Author(s):  
Rakhi Mishra ◽  
Prem Shankar Mishra ◽  
Rupa Mazumder ◽  
Avijit Mazumder ◽  
Anurag Chaudhary

Computational and experimental techniques are two complimentary approaches that have important roles in drug discovery and development. Earlier time and cost of bringing a new drug in market bears a question as it takes seven to twelve years and $ 1.2 billion are often cited. Furthermore, five out of forty thousand compounds tested in animals reach human testing and only one of five compounds reaching clinical studies is approved. This accounts for a large input in terms of time, money and human and other resources. Therefore, new approaches are needed to facilitate, expedite and streamline drug discovery and development, save time, money and resources. Among many computational tools, molecular docking is one of the important means that can be used in drug discovery. It provides the information regarding the binding affinities between small molecules (ligands) and macromolecular receptor targets (proteins). Various approaches, methodology are cited in various literatures for describing the cost, time effect with success of drug discovery task. In this review, introduction of the available molecular docking methods, with simple methodology of docking and examples of drug design and discovery through computational docking methods is discussed and emphasis is made on various examples of sampling algorithms, scoring functions with their relevant characterstics with summary on type of ligand binding with receptors.


AMB Express ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Elahe Pourkhosravani ◽  
Fatemeh Dehghan Nayeri ◽  
Mitra Mohammadi Bazargani

AbstractThis study sets out to compare the antibacterial and antibiofilm profiles of Ci/Ca EOs alone and in combination together against infectious bacterial strains. MIC assay was carried out to survey the effectiveness of prepared EOs by two-fold serial dilution method and MTT evaluation. Synergic antibacterial properties of EOs against target strains were studied by using checkerboard titration method. Biofilm growth and development were evaluated using CV and XTT reduction assays. Antibacterial activity was observed for EOs against both bacterial strains with stronger activity for CiEO against both bacteria. The synergistic antibacterial effect was observed only against B. subtilis. Based on the FIC index, combinations could not inhibit the growth of E. coli. The pure EOs and their combination inhibited cell attachment for both studied bacteria with stronger effect on E. coli. CV and XTT reduction assays results showed that Ci EO and its combination with CaEO had the highest antibiofilm activity at lowest MIC value 0.08% and 0.04/0.02% against biofilm formed by E. coli and B. subtilis respectively, indicating a high antibiofilm potential. Computational docking analyses also postulated that the active constituents of evaluated EOs have the potential to interact with different bacterial targets, suggested binding mode of action of EOs metabolites. By and large, synergistic anti-biofilm properties of EOs may provide further options for developing novel formula to inhibit a variety of infectious clinical and industrial strains without (or less) toxicity effects on human body. Graphical Abstract


2021 ◽  
Author(s):  
Elahe Pourkhosravani ◽  
fatemeh dehghan nayeri ◽  
Mitra Mohammadi Bazargani

Abstract This study sets out to compare the antibacterial and antibiofilm profiles of Ci/Ca EOs alone and in combination together against infectious bacterial strains. MIC assay was carried out to survey the effectiveness of prepared EOs by two-fold serial dilution method and MTT evaluation. Synergic antibacterial properties of EOs against target strains were studied by using checkerboard titration method. Biofilm growth and development were evaluated using CV and XTT reduction assays. Antibacterial activity was observed for EOs against both bacterial strains with stronger activity for CiEO against both bacteria. The synergistic antibacterial effect was observed only against B. subtilis. Based on the FIC index, combinations could not inhibit the growth of E. coli. The pure EOs and their combination inhibited cell attachment for both studied bacteria with stronger effect on E. coli. CV and XTT reduction assays results showed that Ci EO and its combination with CaEO had the highest antibiofilm activity at lowest MIC value 0.08% and 0.04/0.02% against biofilm formed by E. coli and B. subtilis respectively, indicating a high antibiofilm potential. Computational docking analyses also postulated that the active constituents of evaluated EOs have the potential to interact with different bacterial targets, suggested binding mode of action of EOs metabolites. By and large, synergistic anti-biofilm properties of EOs may provide further options for developing novel formula to inhibit a variety of infectious clinical and industrial strains without (or less) toxicity effects on human body.


Sign in / Sign up

Export Citation Format

Share Document