Targeting histidine for developing a new generation of covalent enzyme inhibitors

2021 ◽  
Vol 17 ◽  
Author(s):  
Donald Poirier

: Despite the significant number of irreversible inhibitors developed over the years, strong prejudices remain for this type of therapeutic molecule, particularly in the area of drug development. New generations of covalent targeted inhibitors are, however, in development, and interest is increasingly growing. In fact, the new generation of covalent inhibitors has a weakly reactive species (warhead) that is able, in a particular context, to selectively form a chemical bond with a given amino acid residue, which can be irreversible or reversible. In addition to new selective warheads, new amino acids are also targeted. In the following text, we will focus on covalent targeted inhibitors that selectively alkylate histidine.

2011 ◽  
Vol 47 (2) ◽  
pp. 193-201
Author(s):  
N. E. Borisova ◽  
F. E. Zhurkin ◽  
T. G. Gulevich ◽  
K. K. Babievskii ◽  
M. D. Reshetova ◽  
...  

2012 ◽  
Vol 10 (5) ◽  
pp. 1681-1687 ◽  
Author(s):  
Daniel Cvejn ◽  
Věra Klimešová ◽  
Filip Bureš

Abstractα-Amino acid-derived 2-phenylimidazole derivatives were designed, synthesized, and further investigated as potential antimycobacterial agents. The synthesis of target imidazole derivatives involved the transformation of Cbz-protected α-amino acids (Ala, Val, Phe, Leu, iLe, and Pro) into α-diazoketones and α-bromoketones, respectively. Subsequent treatment of α-bromoketones with (4-nitro)benzamidine afforded imidazole derivatives bearing α-amino acid residue appended to the imidazole C4 and (4-nitro)phenyl ring in the position C2. Antimycobacterial activities of both series of compounds against M. tuberculosis, M. avium, and M. kansasii were screened and basic structure-activity relationships were further evaluated.


1968 ◽  
Vol 23 (7) ◽  
pp. 934-943 ◽  
Author(s):  
Horst Jung ◽  
Helga Schüssler

Dry ribonuclease was irradiated with 60Co gamma radiation in vacuo, under oxygen atmosphere, and at 77 °K. By chromatography on Sephadex G-50 active ribonuclease was separated from inactive radiation products. From the elution pattern and by ultracentrifugation it was shown that mainly unfolded dimers are formed by gamma irradiation of dry ribonuclease. Amino acid analysis of these various products shows that in all components cystine, methionine, tyrosine, phenylalanine, lysine, and histidine are destroyed with increasing dose whereas glycine shows a small increase. Thus, in ribonuclease irradiated in the dry state the same amino acids are changed as was found after irradiation in aqueous solutions. The radiosensitivity of dry ribonuclease shows an increase by the presence of oxygen of about 2 and a decrease at low temperature in vacuo of about 5. The same factors were also found for the alteration of amino acids, which means that under various experimental conditions amino acid destruction is proportional to loss of enzymatic activity of ribonuclease. The observed selectivity of amino acid destruction may be explained by energy migration or by the attack of atomic hydrogen liberated at random from the molecule. The total number of amino acids destroyed per ribonuclease molecule increases with dose. In enzymatically inactive products this value is always higher by one amino acid residue than in the active components. From this result and from the increase with dose it is concluded that after destruction of one amino acid residue the ribonuclease molecule has a probability (not depending on dose of irradiation) of 0.45 to become inactivated whereas in 55 per cent of all cases the molecule maintains its enzymatic activity.


1990 ◽  
Vol 111 (6) ◽  
pp. 2417-2426 ◽  
Author(s):  
J H Sinard ◽  
D L Rimm ◽  
T D Pollard

We used purified fusion proteins containing parts of the Acanthamoeba myosin-II tail to localize those regions of the tail responsible for each of the three steps in the successive dimerization mechanism (Sinard, J. H., W. F. Stafford, and T. D. Pollard. 1989. J. Cell Biol. 107:1537-1547) for Acanthamoeba myosin-II minifiliment assembly. Fusion proteins containing the terminal approximately 90% of the myosin-II tail assemble normally, but deletions within the last 100 amino acids of the tail sequence alter or prevent assembly. The first step in minifilament assembly, formation of antiparallel dimers, requires the COOH-terminal approximately 30 amino acids that are thought to form a nonhelical domain at the end of the coiled-coil. The second step, formation of antiparallel tetramers, requires the last approximately 40 residues in the coiled-coil. The final step, the association of two antiparallel tetramers to form the completed octameric minifilament, requires residues approximately 40-70 from the end of the coiled-coil. A region of the tail near the junction with the heads is important for tight packing of the tails in the minifilaments. Divalent cations induce the lateral aggregation of minifilaments formed from native myosin-II or fusion proteins containing a nonmyosin "head," but under the same conditions fusion proteins composed essentially only of myosin tail sequences with very little nonmyosin sequences form paracrystals. The region of the tail necessary for this paracrystal formation lies NH2-terminal to amino acid residue 1,468 in the native myosin-II sequence.


2005 ◽  
Vol 391 (2) ◽  
pp. 215-220 ◽  
Author(s):  
Allan M. Torres ◽  
Chryssanthi Tsampazi ◽  
Dominic P. Geraghty ◽  
Paramjit S. Bansal ◽  
Paul F. Alewood ◽  
...  

The recent discovery that the natriuretic peptide OvCNPb (Ornithorhynchus venom C-type natriuretic peptide B) from platypus (Ornithorynchus anatinus) venom contains a D-amino acid residue suggested that other D-amino-acid-containing peptides might be present in the venom. In the present study, we show that DLP-2 (defensin-like peptide-2), a 42-amino-acid residue polypeptide in the platypus venom, also contains a D-amino acid residue, D-methionine, at position 2, while DLP-4, which has an identical amino acid sequence, has all amino acids in the L-form. These findings were supported further by the detection of isomerase activity in the platypus gland venom extract that converts DLP-4 into DLP-2. In the light of this new information, the tertiary structure of DLP-2 was recalculated using a new structural template with D-Met2. The structure of DLP-4 was also determined in order to evaluate the effect of a D-amino acid at position 2 on the structure and possibly to explain the large retention time difference observed for the two molecules in reverse-phase HPLC. The solution structures of the DLP-2 and DLP-4 are very similar to each other and to the earlier reported structure of DLP-2, which assumed that all amino acids were in the L-form. Our results suggest that the incorporation of the D-amino acid at position 2 has minimal effect on the overall fold in solution.


2013 ◽  
Vol 63 (3) ◽  
pp. 409-418 ◽  
Author(s):  
Ivana Perković ◽  
Zrinka Rajić Džolić ◽  
Branka Zorc

Abstract A convenient synthetic method for the preparation of novel NSAID twin esters 6a-i containing amino acid residue, urea and amide moieties has been developed. The synthetic pathway applied for the preparation of target compounds and key intermediates 1-benzotriazolecarboxylic acid chloride (1), NSAID benzotriazolides 2a-c and N-(1-benzotriazolecarbonyl)-amino acids 3a-d involved benzotriazole as a synthetic auxiliary. The final preparation step of esters 6a-i included the solvent-free reaction of compounds 2a-c with amino acid derivatives 5a-g, bearing two hydroxyl groups, one at each terminal, beside urea and amide functionalities.


1981 ◽  
Vol 34 (11) ◽  
pp. 2439 ◽  
Author(s):  
FHC Stewart

Syntheses are described of four peptides with modified leucine-enkephalin sequences in which the native glycylglycyl segment is replaced by an ω-amino acid residue. o-Nitrophenylthio-ω-amino acids were used as intermediates, and it was found that the derivatives of 4-aminobutyric and 5-amino-valeric acids undergo facile intramolecular cyclization under the influence of N,N'-dicyclohexylcarbodiimide.


Sign in / Sign up

Export Citation Format

Share Document