Recent Patent on an Energy Conserved Journal Bearing with the Slippage Sleeve Surface

2020 ◽  
Vol 14 (2) ◽  
pp. 262-267
Author(s):  
Yongbin Zhang ◽  
Haijun Chen

Background: Energy consumption in mechanical apparatus has become a big problem in modern industry. It is very important to develop energy-conserved rotary machines, which are very promising in the future. Objective: To introduce a patented energy-conserved hydrodynamic journal bearing with low friction where the interfacial slippage is designed on the whole sleeve surface. Methods: The analytical results are presented for the carried load and friction coefficient of the introduced bearing based on the limiting interfacial shear strength model. The performance of the introduced bearing is compared with that of the conventional hydrodynamic journal bearing for the same operating condition. Results: The obtained results show that in the same operating condition, the carried load of the introduced bearing can be 35%~50% times that of the conventional journal bearing, but its friction coefficient on the shaft surface can be 30%~70% times that of the conventional journal bearing, while its friction coefficient on the sleeve surface is considerably lower and can only be 5%~20% times that of the conventional journal bearing. The friction reducing effect of the bearing depends on the eccentricity ratio and the fluid-sleeve surface interfacial shear strength; the lower the latter, the smaller the friction coefficients on both the shaft and sleeve surfaces. Conclusion: The introduced bearing is obviously of low friction and energy-conserved. It has application values especially in the condition of modest eccentricity ratios, where the loss of the loadcarrying capacity of the bearing due to the interfacial slippage is not so large.

Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2552 ◽  
Author(s):  
Uwe Gohs ◽  
Michael Mueller ◽  
Carsten Zschech ◽  
Serge Zhandarov

Continuous glass fiber-reinforced polypropylene composites produced by using hybrid yarns show reduced fiber-to-matrix adhesion in comparison to their thermosetting counterparts. Their consolidation involves no curing, and the chemical reactions are limited to the glass fiber surface, the silane coupling agent, and the maleic anhydride-grafted polypropylene. This paper investigates the impact of electron beam crosslinkable toughened polypropylene, alkylene-functionalized single glass fibers, and electron-induced grafting and crosslinking on the local interfacial shear strength and critical energy release rate in single glass fiber polypropylene model microcomposites. A systematic comparison of non-, amino-, alkyl-, and alkylene-functionalized single fibers in virgin, crosslinkable toughened and electron beam crosslinked toughened polypropylene was done in order to study their influence on the local interfacial strength parameters. In comparison to amino-functionalized single glass fibers in polypropylene/maleic anhydride-grafted polypropylene, an enhanced local interfacial shear strength (+20%) and critical energy release rate (+80%) were observed for alkylene-functionalized single glass fibers in electron beam crosslinked toughened polypropylene.


Mathematics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 990
Author(s):  
Yasser Zare ◽  
Kyongyop Rhee

This study focuses on the simultaneous stiffening and percolating characteristics of the interphase section in polymer carbon nanotubes (CNTs) systems (PCNTs) using two advanced models of tensile modulus and strength. The interphase, as a third part around the nanoparticles, influences the mechanical features of such systems. The forecasts agree well with the tentative results, thus validating the advanced models. A CNT radius of >40 nm and CNT length of <5 μm marginally improve the modulus by 70%, while the highest modulus development of 350% is achieved with the thinnest nanoparticles. Furthermore, the highest improvement in nanocomposite’s strength (350%) is achieved with the CNT length of 12 μm and interfacial shear strength of 8 MPa. Generally, the highest ranges of the CNT length, interphase thickness, interphase modulus and interfacial shear strength lead to the most desirable mechanical features.


Sign in / Sign up

Export Citation Format

Share Document