compound casting
Recently Published Documents


TOTAL DOCUMENTS

101
(FIVE YEARS 50)

H-INDEX

14
(FIVE YEARS 5)

Author(s):  
Aina Opsal Bakke ◽  
Arne Nordmark ◽  
Lars Arnberg ◽  
Yanjun Li

AbstractObtaining a strong bond between aluminum and steel is challenging due to poor wettability between aluminum melt and steel and brittle intermetallic phases forming in the interface. In this research, a novel coating method, namely hot dipping of Sn, has been developed to treat the steel insert surfaces. Results show that without preheating the mold or Sn-coated insert, a thin, crack-free, and continuous metallurgical bonding layer was achieved in the A356 aluminum/steel compound castings. Intermetallic structures forming in the interface have been characterized in detail. The Sn-coating layer completely melted and mixed with the liquid aluminum during the casting process. The reaction layer at the aluminum/steel interface is composed of ternary Al–Fe–Si particles and a thin layer of binary Al5Fe2 phase with thickness less than 1 µm. A small fraction of dispersed Sn-rich particles was observed distributing in the reaction layer and adjacent to eutectic Si particles in the A356 alloy. A sessile drop wetting test showed that Sn-coated steel substrates can be well wetted by aluminum melt. The improved wettability between A356 alloy melt and steel was attributed to the penetration and breaking of the aluminum oxide layer at the surface of the aluminum droplets by liquid Sn. Graphic Abstract


Author(s):  
Zheng Zhang ◽  
Wenming Jiang ◽  
Guangyu Li ◽  
Junlong Wang ◽  
Feng Guan ◽  
...  

2021 ◽  
Vol 67 (7-8) ◽  
pp. 389-397
Author(s):  
Tomasz Bucki ◽  
Marek Konieczny ◽  
Dana Bolibruchova ◽  
Sylwia Rzepa

The work deals with the fabrication of a joint between AZ31 magnesium alloy and AW-6060 aluminium alloy with the use of a Zn interlayer. The Zn layer was produced on the surface of an AW-6060 alloy insert by diffusion bonding. The insert was then placed inside a steel mould and kept at room temperature. The joint was produced using compound casting by filling the mould with liquid AZ31 alloy, heated to 650 °C. The microstructure of the bonding zone formed between joined alloys was analysed using an optical microscope and a scanning electron microscope equipped with an energy dispersive X-ray spectroscope. The properties of the joint were examined using Vickers microhardness measurements and simple shear strength testing. As a result of the experiment, the 400 μm thick bonding zone with a complex microstructure was formed between the alloys. The microstructural analysis showed that the bonding zone reveals a high concentration of Zn and Mg. The layers of a eutectoid (a MgZn phase + a solid solution of Al and Zn in Mg), a Mg5Al2Zn2 phase and a Mg(Al,Zn)2 phase with fine particles of other phases were observed there. The bonding zone was characterized by relatively high microhardness, which was related to the brittleness of the constituents. The shear strength of the examined joint was 19.6 ± 2.5 MPa.


Sign in / Sign up

Export Citation Format

Share Document