solid compound
Recently Published Documents


TOTAL DOCUMENTS

67
(FIVE YEARS 11)

H-INDEX

15
(FIVE YEARS 3)

2021 ◽  
Vol 133 ◽  
pp. 111029
Author(s):  
Kledi Xhaxhiu ◽  
Arjan Korpa ◽  
Adelaida Andoni ◽  
Carita Kvarnström ◽  
Pia Damlin ◽  
...  

2020 ◽  
Vol 66 (7-8) ◽  
pp. 439-448
Author(s):  
Renata Mola ◽  
Tomasz Bucki

Liquid-solid compound casting was used to produce two types of AZ91/AlSi12 joints. The magnesium alloy was the cast material poured onto a solid aluminium alloy insert with an unmodified or modified structure. The bonding zone obtained for the unmodified insert was not uniform in thickness. There was a eutectic region (Mg17Al12 + a solid solution of Al in Mg) in the area closest to the AZ91. The region adjacent to the AlSi12 had a non-uniform structure with partly reacted Si particles surrounded by the Mg2Si phase and agglomerates of Mg2Si particles unevenly distributed in the Mg-Al intermetallic phases matrix. Cracks were detected in this region. In the AZ91/AlSi12 joint produced with a thermally modified AlSi12 insert, the bonding zone was uniform in thickness. The region closest to the AZ91 alloy also had a eutectic structure. However, significant microstructural changes were reported in the region adjacent to the modified AlSi12 alloy. The microstructure of the region was uniform with no cracks; the fine Mg2Si particles were evenly distributed over the Mg-Al intermetallic phase matrix. The study revealed that in both cases the microhardness of the bonding zone was several times higher than those of the individual alloys; however, during indenter loading, the bonding zone fabricated from modified AlSi12 alloy was less prone to cracking.


Author(s):  
Fathia A. Mosa ◽  
Andrew Whiting

An (4E,6E)-alkadienyl alcohol which is a solid compound which can be stored at rt, upon dissolving into a suitable solvent undergoes facile autoxidation (4E,6E)-alkadienyl alcohol 1 in air at room temperature. The result is complete decompose leading to a mixture of products, including benzaldehyde (24%) and cinnamaldehyde (29%). Possible mechanistic explanations for the autoxidation are discussed.


Materials ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1651 ◽  
Author(s):  
Jun Cheng ◽  
Jian-hua Zhao ◽  
Jin-yong Zhang ◽  
Yu Guo ◽  
Ke He ◽  
...  

A connection between hot-dip galvanized 45 steel and AZ91D was achieved by liquid-solid compound casting to achieve one material with a better mechanical performance and a light weight. The microstructure and properties of galvanized-steel/AZ91D bimetallic materials were investigated in this study. A scanning electron microscopy (SEM), an energy dispersive spectroscopy (EDS), and an X-ray diffraction (XRD) were applied to analyze the microstructure evolution and formation mechanism of the galvanized 45 steel/AZ91D interface zone which could be divided into three layers. Among three different layers, the layer close to AZ91D was composed of α-Mg and an eutectic structure (α-Mg + MgZn). The intermediate layer was comprised of an eutectic structure (α-Mg + MgZn), and the layer adjacent to 45 steel consisted of α-Mg and FeAl3. Furthermore, galvanized-45 steel/AZ91D bimetallic material had better shear strength than the bare-45 steel/AZ91D metallic material which can indicate that owing to the formation of metallurgical bonding, the adhesive strength of galvanized-steel and AZ91D was improved to 11.81 MPa. In addition, the fact that corrosion potential increased from −1.493 V to −1.143 V and corrosion current density changed from 3.015 × 10−5 A/cm2 to 1.34 × 10−7 A/cm2 implied that the corrosion resistance of galvanized-steel/AZ91D was much better than AZ91D.


Sign in / Sign up

Export Citation Format

Share Document