scholarly journals The Use of C- and L-Band Repeat-Pass Interferometric SAR Coherence for Soil Moisture Change Detection in Vegetated Areas

2012 ◽  
Vol 5 (1) ◽  
pp. 37-53 ◽  
Author(s):  
Brian Barrett
Author(s):  
Jiancheng Shi ◽  
E.G. Njoku ◽  
K.S. Chen ◽  
T. Jackson ◽  
P. O'neill

2021 ◽  
Vol 8 (4) ◽  
pp. 81-101
Author(s):  
Sadegh Ranjbar ◽  
Mehdi Akhoondzadeh ◽  
◽  
Keyword(s):  

2020 ◽  
Vol 12 (8) ◽  
pp. 1303
Author(s):  
Xingming Zheng ◽  
Zhuangzhuang Feng ◽  
Hongxin Xu ◽  
Yanlong Sun ◽  
Lei Li ◽  
...  

The launch of the SMOS (Soil Moisture and Ocean Salinity) and SMAP (Soil Moisture Active Passive) satellites has led to the development of a series of L-band soil moisture retrieval algorithms. In these algorithms, many input parameters (such as leaf area index and soil texture) and empirical coefficients (such as roughness coefficient (hP, NRP) and crop structure parameter (bP, ttP)) are needed to calculate surface soil moisture (SSM) from microwave brightness temperature. Many previous studies have focused on how to determine the value of these coefficients and input parameters. Nevertheless, it can be difficult to obtain their ‘real’ values with low uncertainty across large spatial scales. To avoid this problem, a passive microwave remote sensing SSM inversion algorithm based on the principle of change detection was proposed and tested using theoretical simulation and a field SSM dataset for an agricultural area in northeastern China. This algorithm was initially used to estimate SSM for radar remote sensing. First, theoretical simulation results were used to confirm the linear relationship between the change rates for SSM and surface emissivity, for both H and V polarization. This demonstrated the reliability of the change detection algorithm. Second, minimum emissivity (or the difference between maximum emissivity and minimum emissivity) was modeled with a linear relationship between vegetation water content, derived from a three-year (2016–2018) SMAP L3 SSM dataset. Third, SSM values estimated by the change detection algorithm were in good agreement with SMAP L3 SSM and field SSM, with RMSE values ranging from 0.015~0.031 cm3/cm3 and 0.038~0.051 cm3/cm3, respectively. The V polarization SSM accuracy was higher than H polarization and combined H and V polarization accuracy. The retrieved SSM error from the change detection algorithm was similar to SMAP SSM due to errors inherited from the training dataset. The SSM algorithm proposed here is simple in form, has fewer input parameters, and avoids the uncertainty of input parameters. It is very suitable for global applications and will provide a new algorithm option for SSM estimation from microwave brightness temperature.


Agronomy ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 35
Author(s):  
Xiaodong Huang ◽  
Beth Ziniti ◽  
Michael H. Cosh ◽  
Michele Reba ◽  
Jinfei Wang ◽  
...  

Soil moisture is a key indicator to assess cropland drought and irrigation status as well as forecast production. Compared with the optical data which are obscured by the crop canopy cover, the Synthetic Aperture Radar (SAR) is an efficient tool to detect the surface soil moisture under the vegetation cover due to its strong penetration capability. This paper studies the soil moisture retrieval using the L-band polarimetric Phased Array-type L-band SAR 2 (PALSAR-2) data acquired over the study region in Arkansas in the United States. Both two-component model-based decomposition (SAR data alone) and machine learning (SAR + optical indices) methods are tested and compared in this paper. Validation using independent ground measurement shows that the both methods achieved a Root Mean Square Error (RMSE) of less than 10 (vol.%), while the machine learning methods outperform the model-based decomposition, achieving an RMSE of 7.70 (vol.%) and R2 of 0.60.


Sign in / Sign up

Export Citation Format

Share Document