theoretical simulation
Recently Published Documents


TOTAL DOCUMENTS

775
(FIVE YEARS 220)

H-INDEX

32
(FIVE YEARS 6)

Laser Physics ◽  
2022 ◽  
Vol 32 (2) ◽  
pp. 025103
Author(s):  
H M Park ◽  
Y J Oh ◽  
E J Park ◽  
J S Park ◽  
H Jeong ◽  
...  

Abstract A high-power master-oscillator power-amplifier (MOPA) at 1018 nm employing ytterbium (Yb)-doped fibres as a gain medium is reported. Utilizing a diffraction grating as a reflector, we could successfully suppress the influence of the broadband amplified spontaneous emission on the master-oscillator or the power-amplifier, resulting in stable amplification of the laser signal at 1018 nm. Based on a simple theoretical simulation on gain spectra and experimental investigation on parasitic lasing thresholds, the Yb fibre MOPA constructed in-house yielded 220 W of output at 1018 nm with a beam propagation factor (M2) of 1.1. The prospects for further power scaling are considered.


2022 ◽  
Author(s):  
Qi Zhou ◽  
Ping Wang ◽  
Bei-Bei Ma ◽  
Zhong-Ying Jiang ◽  
Tao Zhu

Abstract Osmotic pressure can break the fluid balance between intracellular and extracellular solutions. In hypo-osmotic solution, water molecules, which transfer into the cell and burst, are driven by the concentrations difference of solute across the semi-permeable membrane. The complicated dynamic processes of the intermittent burst have been previously observed. However, the underlying physical mechanism has yet to be thoroughly explored and analyzed. Here, the intermittent release of inclusion in giant unilamellar vesicles was investigated quantitatively, applying the combination of experimental and theoretical methods in the hypo-osmotic medium. Experimentally, we adopted highly sensitive EMCCD to acquire intermittent dynamic images. Notably, the component of the vesicle phospholipids affected the stretch velocity, and the prepared solution of the vesicle adjusted the release time. Theoretically, we chose equations numerical simulations to quantify the dynamic process in phases and explored the influence of physical parameters such as bilayer permeability and solution viscosity on the process. It was concluded that the time taken to achieve the balance of giant unilamellar vesicles was highly dependent on the structure of the lipid molecular. The pore lifetime was strongly related with the internal solution environment of giant unilamellar vesicles. The vesicle prepared in viscous solution accessed visualized long-lived pore. Furthermore, the line tension was measured quantitatively by the release velocity of inclusion, which was in the same order of magnitude as the theoretical simulation. In all, the experimental values well matched the theoretical values. Our investigation clarified the physical regulatory mechanism of intermittent pore formation and inclusion release, which had an important reference for the development of novel technologies such as gene therapy based on transmembrane transport as well as controlled drug delivery based on liposomes.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Monirul Hasan ◽  
Siddhartha Saggar ◽  
Atul Shukla ◽  
Fatima Bencheikh ◽  
Jan Sobus ◽  
...  

AbstractPolaron-induced exciton quenching in thermally activated delayed fluorescence (TADF)-based organic light-emitting diodes (OLEDs) can lead to external quantum efficiency (EQE) roll-off and device degradation. In this study, singlet-polaron annihilation (SPA) and triplet-polaron annihilation (TPA) were investigated under steady-state conditions and their relative contributions to EQE roll-off were quantified, using experimentally obtained parameters. It is observed that both TPA and SPA can lead to efficiency roll-off in 2,4,5,6-tetra(9H-carbazol-9-yl)isophthalonitrile (4CzIPN) doped OLEDs. Charge imbalance and singlet-triplet annihilation (STA) were found to be the main contributing factors, whereas the device degradation process is mainly dominated by TPA. It is also shown that the impact of electric field-induced exciton dissociation is negligible under the DC operation regime (electric field < 0.5 MV cm−1). Through theoretical simulation, it is demonstrated that improvement to the charge recombination rate may reduce the effect of polaron-induced quenching, and thus significantly decrease the EQE roll-off.


2022 ◽  
Vol 6 (1) ◽  
pp. 22
Author(s):  
Konstantinos Ninikas ◽  
Porfyrios Tallaros ◽  
Andromachi Mitani ◽  
Dimitrios Koutsianitis ◽  
Georgios Ntalos ◽  
...  

The objective of this paper is to compare the thermal behavior of a light frame timber wall by measuring 15 test samples with various insulation materials versus a theoretical simulation with the use of a software. This work establishes the variance between the two different methods to measure the thermal transmittance coefficient of timber walls. It is verified that the mean percentage alteration between the two methods is 4.25%. Furthermore, this approach proved that with the use of a simulation software, additional readings (humidity, vapor flux, heat flux, and vapor pressure) can also be considered and measured, enhancing the overall development of a timber wall. This can provide additional information regarding to the characteristics of the masonry’s elements assisting in an improved design of a timber wall with upgraded performance.


2022 ◽  
Vol 43 (1) ◽  
pp. 011001
Author(s):  
Kaiyao Xin ◽  
Xingang Wang ◽  
Kasper Grove-Rasmussen ◽  
Zhongming Wei

Abstract Twist-angle two-dimensional systems, such as twisted bilayer graphene, twisted bilayer transition metal dichalcogenides, twisted bilayer phosphorene and their multilayer van der Waals heterostructures, exhibit novel and tunable properties due to the formation of Moiré superlattice and modulated Moiré bands. The review presents a brief venation on the development of “twistronics” and subsequent applications based on band engineering by twisting. Theoretical predictions followed by experimental realization of magic-angle bilayer graphene ignited the flame of investigation on the new freedom degree, twist-angle, to adjust (opto)electrical behaviors. Then, the merging of Dirac cones and the presence of flat bands gave rise to enhanced light-matter interaction and gate-dependent electrical phases, respectively, leading to applications in photodetectors and superconductor electronic devices. At the same time, the increasing amount of theoretical simulation on extended twisted 2D materials like TMDs and BPs called for further experimental verification. Finally, recently discovered properties in twisted bilayer h-BN evidenced h-BN could be an ideal candidate for dielectric and ferroelectric devices. Hence, both the predictions and confirmed properties imply twist-angle two-dimensional superlattice is a group of promising candidates for next-generation (opto)electronics.


2021 ◽  
Author(s):  
Sitti Buathong ◽  
Sorakrai Srisuphaphon ◽  
Sarayut Deachapunya

Abstract In a prior report the optical vortex was characterized using the near-field Talbot effect [1, 2]. This near-field technique can resolve both order and charge of the orbital angular momentum state of the vortex beam. We have proposed before that a small open fraction of the grating in the Talbot configuration can improve the image contrast [3]. In this study, we combine these previously reported techniques, i.e. the Talbot effect for probing an optical vortex and overlapping gratings to manipulate the open fraction. Both theoretical simulation and experimental demonstration are presented here. We believe that our technique can be an alternative method for optical vortex imaging, and could be useful in optical applications.


Author(s):  
Guoda Chen ◽  
Qi Lu ◽  
Yifan Ge ◽  
Wei Zhang

This paper studied the air film pressure field (AFPF) characteristics of aerostatic thrust bearing, in which we proposed the measurement equipment for the 2D AFPF and successfully verified the theoretical simulation results. The experimental results agreed well with the theoretical results. However, in the area between the distribution circle of orifice to the air film outlet boundary, the experimental air film pressure (AFP) was slightly higher than the theoretical one. While for the area between the distribution circle of orifice and the center of the bearing, it showed the opposite law. Besides, the increase ratio of the AFP was close to that of the external load with its increase.


Author(s):  
Hai-Feng Li ◽  
Dun-Zhong Xing ◽  
Qian Huang ◽  
Jiangcheng Li

Abstract We theoretically stochastic simulate and empirically analyze the escape process of stock market price nonequilibrium dynamics under the influence of GARCH and ARCH effects, and explore the impact of ARCH and GARCH effects on stock market stability. Based on the nonlinear GARCH model of econophysics, and combined with GARCH and ARCH effects of volatility, we propose a delay stochastic monostable potential model. We use the mean escape time, or mean hitting time, as an indicator for measuring price stability, as first introduced in Ref. [1]. Based on the comparative analysis of actual Chinese A-share data, the theoretical and empirical findings of this paper are as follows} (1) The theoretical simulation results and actual data are consistent. (2) There exist optimal GARCH and ARCH effects maximally enhancing stock market stability.


2021 ◽  
Vol 9 ◽  
Author(s):  
Junxiao Wang ◽  
Yang Zhao ◽  
Lei Zhang ◽  
Shuqing Wang ◽  
Maogen Su ◽  
...  

Through the theoretical simulation and analysis of the whole process of laser ablating target and producing plasma with high spatio-temporal resolution, it is helpful for people to gain a more complete understanding of the ablation process of target and the evolution process of plasma parameters, which has an important guiding role for the improvement and optimization of laser ablation technology. Alloys are commonly used in daily life, but there are few researches on laser-induced alloy targets at present. Therefore, based on the thermal model of laser ablation and the two-dimensional axisymmetric multi-species hydrodynamic model, the process of laser ablating Al-Mg alloy under atmospheric pressure argon is theoretically simulated, and the ablation process of alloy target and the spatio-temporal evolution results of plasma parameters under different laser irradiances are compared. At high laser irradiance, the melt and evaporation depth, laser energy absorption and plasma characterization parameters are much greater than those at low laser irradiance, and the species energy distribution at different laser irradiance also presents different trends. In addition, the velocity of different species is calculated according to the position-time diagram of the maximum emission intensity, and they expand at a constant speed during the studied time. These results can provide some theoretical guidance for the early application of laser-induced breakdown spectroscopy in metallurgy.


Sign in / Sign up

Export Citation Format

Share Document