Discovery of potential inhibitors of the receptor-binding domain (RBD) of pandemic disease-causing SARS-CoV-2 Spike Glycoprotein from Triphala through molecular docking

2021 ◽  
Vol 01 ◽  
Author(s):  
Sharuk L. Khan ◽  
Falak A. Siddiqui ◽  
Mohd Sayeed Shaikh ◽  
Nitin V. Nema ◽  
Aijaz A. Shaikh

Background: COVID-19 (SARS-CoV-2 infection) has affected almost every region of the world. Presently, there is no defined line of treatment available for it. Triphala is already proven to have a safe biological window and well known for its antioxidant and immunomodulatory properties. Objective: Present work has been carried out to study Triphala's effectiveness for the treatment of COVID-19. Methods: The Receptor-binding domain (RBD) of SARS-CoV-2 Spike Glycoprotein responsible for the invasion into the host cell, which leads to further infection. The molecular docking (MD) was performed to explore the binding affinities (kcal/mol) of Triphala's chemical constituents and compared them with the existing drugs under investigation for the treatment of COVID-19 epidemiology. Results: Chebulinic acid binding affinity -8.5 kcal/mol with the formation of 10 hydrogen bonds. Almost all the major chemical constituents have formed two or more hydrogen bonds with RBD of SARS-CoV-2 Spike Glycoprotein. Conclusion: The present study showed that Triphala might perform vital roles in the treatment of COVID-19 and expand its usefulness to physicians to treat this illness. There is a need to complete the in-vitro, in-vivo biological testing of Triphala on SARS-CoV-2 disease to create more quality data. The binding mode of Chebulinic acid in the allosteric cavity allows a better understanding of RBD of SARS-CoV-2 Spike Glycoprotein target and provides insight for the design of new inhibitors. Triphala is already proven to have a safe biological window, which indicates we can skip the pre-clinical trials. Apart from this, Triphala is well known for its antioxidant properties, which ultimately improves the immunity of the COVID-19 patient.

2020 ◽  
Author(s):  
LAMIAE ELKHATTABI ◽  
Hicham Charoute ◽  
Rachid Saile ◽  
Abdelhamid Barakat

The novel COVID-19 pandemic is now a health threat, with a deep-felt impact worldwide. The new coronavirus 2019 (2019 n-Cov) binds to host human receptors through Receptor Binding Domain RBD of Spike glycoprotein (S), making it a prominent drug target. The present study aims to identify new potential hits that can inhibit the S protein using in silico approaches. Several natural and synthetics compounds (antiasthmatics, Antiviral, Antimalarial, Antibacterial, Anti-Inflammatory, cyclic peptide, and cyclic bis) were screened by molecular docking using AutoDock Vina. Additionally, we tested calcitriol and three known drugs (Azithromycin, HydroxyChloroquine, and Chloroquine ) against the spike protein to found if they have any direct interaction.<br>Our finding consists of 4 potential synthetic compounds from PubChem database, known for their antiasthmatic effects, that show highly binding energies each (-8.6 kcal/mol, 7.7kcal/mol, -7.2 kcal/mol and -7.0 kcal/mol). Another 5 natural compounds from the South African natural sources database (SANCDB) that bind to RBD of Spike with significant energy each: (Marchantin C with -7.3 kcal/mol, Riccardin C with -7.0 kcal/mol, Digitoxigenin-glucoside with -6.9 kcal/mol, D-Friedoolean-14-en-oic acid with -6.8 kcal/mol and, Spongotine A with -6.7 kcal/mol). The FaF-Drugs server was used to evaluate the drug-like properties of the identified compounds. Additionally, Calcitriol, Azithromycin, and HydroxyChloroquine have an appreciable binding affinity to 2019-nCoV S, suggesting a possible mechanism of action. Using in silico approaches like molecular docking and pharmacokinetic properties, we showed new potential inhibitors. Our findings need further analysis, and chemical design for more effective derivatives of these compounds speculated to disrupt the viral recognition of host receptors.


Author(s):  
Tamal Goswami ◽  
Bhaskar Bagchi

The appearance of SARS-CoV-2 has resulted ~19000 deaths and ~423000 infections worldwide as of March 24, 2020. Coronavirus spike (S) glycoproteins hooks on target cells and binds to the angiotensin-converting enzyme 2 (ACE2) receptor. Recent researches speculated that residues 331 to 524 of the S glycoprotein of the receptor binding domain (RDB) of the spike is the most crucial target and this side was very important for computational docking. In the present study we have considered a series of saikosaponins and molecular docking was performed. Most of the docked molecules bind favorably to the RDB region of the spike glycoprotein and among them Saikosaponin B4 is the best inhibitor.


Author(s):  
Falak A. Siddiqui ◽  
Sharuk L. Khan ◽  
Rajendra P Marathe ◽  
Nitin V. Nemac

Background: Pneumonia induced by a novel coronavirus (SARS-CoV-2) was named as coronavirus disease 2019 (COVID-19). The Receptor-binding domain (RBD) of SARS-CoV-2 Spike Glycoprotein, causes invasion of the virus into the host cell by attaching with human angiotensin-converting enzyme-2 (hACE-2) which leads to further infection. Objectives: The novel N-(2-aminophenyl)-2,3-diphenylquinoxaline-6-sulfonamide derivatives were designed and synthesized to inhibit the RBD of SARS-CoV-2 Spike Glycoprotein by applying molecular docking tools. Methods: The synthesized products was characterized by Infrared Spectroscopy (IR), and 1H Nuclear Magnetic Resonance (NMR). Results: All the derivatives were found to have a very good binding affinity between -9 to -10.1 kcal/mol, better than the drugs which are under investigation for the treatment of SARS-CoV-2 infection. Compound F1 has formed 4 hydrogen bonds whereas, F4 and F10 formed two hydrogen bonds each with RBD of SARS-CoV-2 Spike Glycoprotein. All the derivatives were subjected to antimicrobial, antifungal, and antimalarial susceptibility. Conclusion: From the above-obtained results, we have concluded that novel N-(2-aminophenyl)-2,3-diphenylquinoxaline-6-sulfonamide derivatives have excellent potential to inhibit the receptor-binding domain (RBD) of SARS-CoV-2 Spike Glycoprotein, which is now an attentive target in designing SARS-CoV-2 inhibitors. This scaffold can hold an effective interest in the development of inhibitors for SARS-CoV-2 in the future if drug repurposing fails to serve the purpose.


2005 ◽  
Vol 79 (12) ◽  
pp. 7629-7640 ◽  
Author(s):  
Sonia Navas-Martin ◽  
Susan T. Hingley ◽  
Susan R. Weiss

ABSTRACT Murine coronavirus A59 strain causes mild to moderate hepatitis in mice. We have previously shown that mutants of A59, unable to induce hepatitis, may be selected by persistent infection of primary glial cells in vitro. These in vitro isolated mutants encoded two amino acids substitutions in the spike (S) gene: Q159L lies in the putative receptor binding domain of S, and H716D, within the cleavage signal of S. Here, we show that hepatotropic revertant variants may be selected from these in vitro isolated mutants (Q159L-H716D) by multiple passages in the mouse liver. One of these mutants, hr2, was chosen for more in-depth study based on a more hepatovirulent phenotype. The S gene of hr2 (Q159L- R654H -H716D- E1035D ) differed from the in vitro isolates (Q159L-H716D) in only 2 amino acids (R654H and E1035D). Using targeted RNA recombination, we have constructed isogenic recombinant MHV-A59 viruses differing only in these specific amino acids in S (Q159L-R654H-H716D-E1035D). We demonstrate that specific amino acid substitutions within the spike gene of the hr2 isolate determine the ability of the virus to cause lethal hepatitis and replicate to significantly higher titers in the liver compared to wild-type A59. Our results provide compelling evidence of the ability of coronaviruses to rapidly evolve in vivo to highly virulent phenotypes by functional compensation of a detrimental amino acid substitution in the receptor binding domain of the spike glycoprotein.


2020 ◽  
Author(s):  
LAMIAE ELKHATTABI ◽  
Hicham Charoute ◽  
Rachid Saile ◽  
Abdelhamid Barakat

The novel COVID-19 pandemic is now a health threat, with a deep-felt impact worldwide. The new coronavirus 2019 (2019 n-Cov) binds to host human receptors through Receptor Binding Domain RBD of Spike glycoprotein (S), making it a prominent drug target. The present study aims to identify new potential hits that can inhibit the S protein using in silico approaches. Several natural and synthetics compounds (antiasthmatics, Antiviral, Antimalarial, Antibacterial, Anti-Inflammatory, cyclic peptide, and cyclic bis) were screened by molecular docking using AutoDock Vina. Additionally, we tested calcitriol and three known drugs (Azithromycin, HydroxyChloroquine, and Chloroquine ) against the spike protein to found if they have any direct interaction.<br>Our finding consists of 4 potential synthetic compounds from PubChem database, known for their antiasthmatic effects, that show highly binding energies each (-8.6 kcal/mol, 7.7kcal/mol, -7.2 kcal/mol and -7.0 kcal/mol). Another 5 natural compounds from the South African natural sources database (SANCDB) that bind to RBD of Spike with significant energy each: (Marchantin C with -7.3 kcal/mol, Riccardin C with -7.0 kcal/mol, Digitoxigenin-glucoside with -6.9 kcal/mol, D-Friedoolean-14-en-oic acid with -6.8 kcal/mol and, Spongotine A with -6.7 kcal/mol). The FaF-Drugs server was used to evaluate the drug-like properties of the identified compounds. Additionally, Calcitriol, Azithromycin, and HydroxyChloroquine have an appreciable binding affinity to 2019-nCoV S, suggesting a possible mechanism of action. Using in silico approaches like molecular docking and pharmacokinetic properties, we showed new potential inhibitors. Our findings need further analysis, and chemical design for more effective derivatives of these compounds speculated to disrupt the viral recognition of host receptors.


Author(s):  
Tamal Goswami ◽  
Bhaskar Bagchi

The appearance of SARS-CoV-2 has resulted ~19000 deaths and ~423000 infections worldwide as of March 24, 2020. Coronavirus spike (S) glycoproteins hooks on target cells and binds to the angiotensin-converting enzyme 2 (ACE2) receptor. Recent researches speculated that residues 331 to 524 of the S glycoprotein of the receptor binding domain (RDB) of the spike is the most crucial target and this side was very important for computational docking. In the present study we have considered a series of saikosaponins and molecular docking was performed. Most of the docked molecules bind favorably to the RDB region of the spike glycoprotein and among them Saikosaponin B4 is the best inhibitor.


Author(s):  
Bipin Singh

: The recent outbreak of novel coronavirus (SARS-CoV-2 or 2019-nCoV) and its worldwide spread is posing one of the major threats to human health and the world economy. It has been suggested that SARS-CoV-2 is similar to SARSCoV based on the comparison of the genome sequence. Despite the genomic similarity between SARS-CoV-2 and SARSCoV, the spike glycoprotein and receptor binding domain in SARS-CoV-2 shows the considerable difference compared to SARS-CoV, due to the presence of several point mutations. The analysis of receptor binding domain (RBD) from recently published 3D structures of spike glycoprotein of SARS-CoV-2 (Yan, R., et al. (2020); Wrapp, D., et al. (2020); Walls, A. C., et al. (2020)) highlights the contribution of a few key point mutations in RBD of spike glycoprotein and molecular basis of its efficient binding with human angiotensin-converting enzyme 2 (ACE2).


Sign in / Sign up

Export Citation Format

Share Document