Identification of Coronary Artery Disease using Artificial Neural Network and Case Based Reasoning

Author(s):  
Varun Sapra ◽  
M.L Saini ◽  
Luxmi Verma

Background: Cardiovascular diseases are increasing at an alarming rate with very high rate of mortality. Coronary artery disease is one of the type of cardiovascular disease, which is not easily diagnosed in its early stage. Prevention of Coronary Artery Disease is possible only if it is diagnosed, at early stage and proper medication is done. Objective: An effective diagnosis model is important not only for the early diagnosis but also to check the severity of the disease. Method: In this paper, a hybrid approach is followed, with the integration of deep learning (multi-layer perceptron) with Case based reasoning to design analytical framework. This paper suggests two phases of the study, one in which the patient is diagnosed for Coronary artery disease and in second phase, if the patient is suffering from the disease then employing Case based reasoning to diagnose the severity of the disease. In the first phase, multilayer perceptron is implemented on reduced dataset and with time-based learning for stochastic gradient descent respectively. Results: The classification accuracy is increase by 4.18 % with reduced data set using deep neural network with time based learning. In second phase, if the patient is diagnosed as positive for Coronary artery disease, then it triggers the Case based reasoning system to retrieve from the case base, the most similar case to predict the severity for that patient. The CBR model achieved 97.3% accuracy. Conclusion: The model can be very useful for medical practitioners as a supporting decision system and thus can save the patients from unnecessary medical expenses on costly tests and can improve the quality and effectiveness of medical treatment.

2019 ◽  
Vol 8 (2) ◽  
pp. 2959-2966 ◽  

Heart disease is treated as one of the noxious diseases at the present time. Coronary artery disease is a kind of heart syndrome which is statistically growing day by day in the society. It is very tough for medical practitioners to predict Coronary artery disease as it is a complicated task that needs experience and acquaintance. For the detection of the disease doctors normally prescribe various invasive and non-invasive methods like angiography, ECG and echocardiogram. These methods are very expensive and sometimes not able to discover a number of undiagnosed symptoms. Due to these, it is not possible to detect the disease accurately at an early stage. The medical sector today contains a number of useful data that is helpful to detect a disease accurately. Using this data many researchers have proposed a number of intelligent systems for the detection of the disease. In this work, a competent system is implemented using deep learning for the better detection of the disease. The system is constructed using Convolutional Neural Network. The system has three phases. In the first phase data cleaning, data imputation and important feature selection are performed. In the second phase model training and hyperparameter tuning is performed. Finally, in the last phase, the model prediction is performed using the test data. The data set used for experimentation is Cleveland, Hungary, Switzerland and Long beach heart disease data present in the UCI repository. The proposed system gives a classification accuracy of 96.49% during testing, which is highest among all the discussed methods.


2020 ◽  
Vol 15 ◽  
Author(s):  
Elham Shamsara ◽  
Sara Saffar Soflaei ◽  
Mohammad Tajfard ◽  
Ivan Yamshchikov ◽  
Habibollah Esmaili ◽  
...  

Background: Coronary artery disease (CAD) is an important cause of mortality and morbidity globally. Objective : The early prediction of the CAD would be valuable in identifying individuals at risk, and in focusing resources on its prevention. In this paper, we aimed to establish a diagnostic model to predict CAD by using three approaches of ANN (pattern recognition-ANN, LVQ-ANN, and competitive ANN). Methods: One promising method for early prediction of disease based on risk factors is machine learning. Among different machine learning algorithms, the artificial neural network (ANN) algo-rithms have been applied widely in medicine and a variety of real-world classifications. ANN is a non-linear computational model, that is inspired by the human brain to analyze and process complex datasets. Results: Different methods of ANN that are investigated in this paper indicates in both pattern recognition ANN and LVQ-ANN methods, the predictions of Angiography+ class have high accuracy. Moreover, in CNN the correlations between the individuals in cluster ”c” with the class of Angiography+ is strongly high. This accuracy indicates the significant difference among some of the input features in Angiography+ class and the other two output classes. A comparison among the chosen weights in these three methods in separating control class and Angiography+ shows that hs-CRP, FSG, and WBC are the most substantial excitatory weights in recognizing the Angiography+ individuals although, HDL-C and MCH are determined as inhibitory weights. Furthermore, the effect of decomposition of a multi-class problem to a set of binary classes and random sampling on the accuracy of the diagnostic model is investigated. Conclusion : This study confirms that pattern recognition-ANN had the most accuracy of performance among different methods of ANN. That’s due to the back-propagation procedure of the process in which the network classify input variables based on labeled classes. The results of binarization show that decomposition of the multi-class set to binary sets could achieve higher accuracy.


2021 ◽  
Vol 12 (3) ◽  
pp. 35-43
Author(s):  
Pratibha Verma ◽  
Vineet Kumar Awasthi ◽  
Sanat Kumar Sahu

Coronary artery disease (CAD) has been the leading cause of death worldwide over the past 10 years. Researchers have been using several data mining techniques to help healthcare professionals diagnose heart disease. The neural network (NN) can provide an excellent solution to identify and classify different diseases. The artificial neural network (ANN) methods play an essential role in recognizes diseases in the CAD. The authors proposed multilayer perceptron neural network (MLPNN) among one hidden layer neuron (MLP) and four hidden layers neurons (P-MLP)-based highly accurate artificial neural network (ANN) method for the classification of the CAD dataset. Therefore, the ten-fold cross-validation (T-FCV) method, P-MLP algorithms, and base classifiers of MLP were employed. The P-MLP algorithm yielded very high accuracy (86.47% in CAD-56 and 98.35% in CAD-59 datasets) and F1-Score (90.36% in CAD-56 and 98.83% in CAD-59 datasets) rates, which have not been reported simultaneously in the MLP.


Genes ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1446
Author(s):  
Tanyaporn Pattarabanjird ◽  
Corban Cress ◽  
Anh Nguyen ◽  
Angela Taylor ◽  
Stefan Bekiranov ◽  
...  

Background: Machine learning (ML) has emerged as a powerful approach for predicting outcomes based on patterns and inferences. Improving prediction of severe coronary artery disease (CAD) has the potential for personalizing prevention and treatment strategies and for identifying individuals that may benefit from cardiac catheterization. We developed a novel ML approach combining traditional cardiac risk factors (CRF) with a single nucleotide polymorphism (SNP) in a gene associated with human CAD (ID3 rs11574) to enhance prediction of CAD severity; Methods: ML models incorporating CRF along with ID3 genotype at rs11574 were evaluated. The most predictive model, a deep neural network, was used to classify patients into high (>32) and low level (≤32) Gensini severity score. This model was trained on 325 and validated on 82 patients. Prediction performance of the model was summarized by a confusion matrix and area under the receiver operating characteristics curve (ROC-AUC); and Results: Our neural network predicted severity score with 81% and 87% accuracy for the low and the high groups respectively with an ROC-AUC of 0.84 for 82 patients in the test group. The addition of ID3 rs11574 to CRF significantly enhanced prediction accuracy from 65% to 81% in the low group, and 72% to 84% in the high group. Age, high-density lipoprotein (HDL), and systolic blood pressure were the top 3 contributors in predicting severity score; Conclusions: Our neural network including ID3 rs11574 improved prediction of CAD severity over use of Framingham score, which may potentially be helpful for clinical decision making in patients at increased risk of complications from coronary angiography.


Sign in / Sign up

Export Citation Format

Share Document