scholarly journals Thin Film Nanocomposite of Nanofiltration Membrane for Water Softening and Desalination

2021 ◽  
pp. 69-112
Author(s):  
M.H. Tajuddin

This chapter discusses about nanofiltration (NF) membrane for water softening and desalination. The NF membrane system and thin film composite (TFC) membranes are discussed in general followed by their drawbacks. Next, recent trend of nanofillers in thin film nanocomposite (TFN) membrane is critically discussed and highlighted. The advantages and challenges of TFN membrane for water softening and desalination application are thoroughly analyzed. Lastly, the future directions of the TFN membrane for practical application are addressed.

2017 ◽  
Vol 407 ◽  
pp. 260-275 ◽  
Author(s):  
Hongbin Li ◽  
Wenying Shi ◽  
Qiyun Du ◽  
Rong Zhou ◽  
Haixia Zhang ◽  
...  

Membranes ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 137
Author(s):  
Hongyi Han ◽  
Ruobin Dai ◽  
Zhiwei Wang

Widespread applications of nanofiltration (NF) and reverse osmosis (RO)-based processes for water purification and desalination call for high-performance thin-film composite (TFC) membranes. In this work, a novel and facile modification method was proposed to fabricate high-performance thin-film composite nanofiltration membrane by introducing Ca2+ in the heat post-treatment. The introduction of Ca2+ induced in situ Ca2+-carboxyl intra-bridging, leading to the embedment of Ca2+ in the polyamide (PA) layer. This post modification enhanced the hydrophilicity and surface charge of NF membranes compared to the pristine membrane. More interestingly, the modified membrane had more nodules and exhibited rougher morphology. Such changes brought by the addition of Ca2+ enabled the significant increase of water permeability (increasing from 17.9 L·m−2·h−1·bar−1 to 29.8 L·m−2·h−1·bar−1) while maintaining a high selectivity (Na2SO4 rejection rate of 98.0%). Furthermore, the intra-bridging between calcium and carboxyl imparted the NF membranes with evident antifouling properties, exhibiting milder permeability decline of 4.2% (compared to 16.7% of NF-control) during filtration of sodium alginate solution. The results highlight the potential of using Ca2+-carboxyl intra-bridging post-treatment to fabricate high-performance TFC membranes for water purification and desalination.


2011 ◽  
Vol 23 (5) ◽  
pp. 884-893 ◽  
Author(s):  
Ahmad Rahimpour ◽  
Mohsen Jahanshahi ◽  
Majid Peyravi ◽  
Soodabeh Khalili

Polymers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 269 ◽  
Author(s):  
Yu-Hsuan Chiao ◽  
Tanmoy Patra ◽  
Micah Belle Marie Yap Ang ◽  
Shu-Ting Chen ◽  
Jorge Almodovar ◽  
...  

Nanofiltration membranes have evolved as a promising solution to tackle the clean water scarcity and wastewater treatment processes with their low energy requirement and environment friendly operating conditions. Thin film composite nanofiltration membranes with high permeability, and excellent antifouling and antibacterial properties are important component for wastewater treatment and clean drinking water production units. In the scope of this study, thin film composite nanofiltration membranes were fabricated using polyacrylonitrile (PAN) support and fast second interfacial polymerization modification methods by grafting polyethylene amine and zwitterionic sulfobutane methacrylate moieties. Chemical and physical alteration in structure of the membranes were characterized using methods like ATR-FTIR spectroscopy, XPS analysis, FESEM and AFM imaging. The effects of second interfacial polymerization to incorporate polyamide layer and ‘ion pair’ characteristics, in terms of water contact angle and surface charge analysis was investigated in correlation with nanofiltration performance. Furthermore, the membrane characteristics in terms of antifouling properties were evaluated using model protein foulants like bovine serum albumin and lysozyme. Antibacterial properties of the modified membranes were investigated using E. coli as model biofoulant. Overall, the effect of second interfacial polymerization without affecting the selectivity layer of nanofiltration membrane for their potential large-scale application was investigated in detail.


Sign in / Sign up

Export Citation Format

Share Document