scholarly journals Three-Dimensional Reconstructed Computed Tomography-Magnetic Resonance Fusion Image-Based Preoperative Planning for Surgical Procedures for Spinal Lipoma or Tethered Spinal Cord After Myelomeningocele Repair

2011 ◽  
Vol 51 (5) ◽  
pp. 397-402 ◽  
Author(s):  
Yohei BAMBA ◽  
Masahiro NONAKA ◽  
Shin NAKAJIMA ◽  
Mami YAMASAKI

2020 ◽  
Vol 1 (1) ◽  
pp. 62-70
Author(s):  
Amir H Sadeghi ◽  
Wouter Bakhuis ◽  
Frank Van Schaagen ◽  
Frans B S Oei ◽  
Jos A Bekkers ◽  
...  

Abstract Aims Increased complexity in cardiac surgery over the last decades necessitates more precise preoperative planning to minimize operating time, to limit the risk of complications during surgery and to aim for the best possible patient outcome. Novel, more realistic, and more immersive techniques, such as three-dimensional (3D) virtual reality (VR) could potentially contribute to the preoperative planning phase. This study shows our initial experience on the implementation of immersive VR technology as a complementary research-based imaging tool for preoperative planning in cardiothoracic surgery. In addition, essentials to set up and implement a VR platform are described. Methods Six patients who underwent cardiac surgery at the Erasmus Medical Center, Rotterdam, The Netherlands, between March 2020 and August 2020, were included, based on request by the surgeon and availability of computed tomography images. After 3D VR rendering and 3D segmentation of specific structures, the reconstruction was analysed via a head mount display. All participating surgeons (n = 5) filled out a questionnaire to evaluate the use of VR as preoperative planning tool for surgery. Conclusion Our study demonstrates that immersive 3D VR visualization of anatomy might be beneficial as a supplementary preoperative planning tool for cardiothoracic surgery, and further research on this topic may be considered to implement this innovative tool in daily clinical practice. Lay summary Over the past decades, surgery on the heart and vessels is becoming more and more complex, necessitating more precise and accurate preoperative planning. Nowadays, operative planning is feasible on flat, two-dimensional computer screens, however, requiring a lot of spatial and three-dimensional (3D) thinking of the surgeon. Since immersive 3D virtual reality (VR) is an upcoming imaging technique with promising results in other fields of surgery, we aimed in this study to explore the additional value of this technique in heart surgery. Our surgeons planned six different heart operations by visualizing computed tomography scans with a dedicated VR headset, enabling them to visualize the patient’s anatomy in an immersive and 3D environment. The outcomes of this preliminary study are positive, with a much more reality-like simulation for the surgeon. In such, VR could potentially be beneficial as a preoperative planning tool for complex heart surgery.



1997 ◽  
Vol 82 (3) ◽  
pp. 998-1002 ◽  
Author(s):  
Nicolas Pettiaux ◽  
Marie Cassart ◽  
Manuel Paiva ◽  
Marc Estenne

Pettiaux, Nicolas, Marie Cassart, Manuel Paiva, and Marc Estenne. Three-dimensional reconstruction of human diaphragm with the use of spiral computed tomography. J. Appl. Physiol. 82(3): 998–1002, 1997.—We developed a technique of diaphragm imaging by using spiral computed tomography, and we studied four normal subjects who had been previously investigated with magnetic resonance imaging (A. P. Gauthier, S. Verbanck, M. Estenne, C. Segebarth, P. T. Macklem, and M. Paiva. J. Appl. Physiol. 76: 495–506, 1994). One acquisition of 15- to 25-s duration was performed at residual volume, functional residual capacity, functional residual capacity plus one-half inspiratory capacity, and total lung capacity with the subject holding his breath and relaxing. From these acquisitions, 20 coronal and 30 sagittal images were reconstructed at each lung volume; on each image, diaphragm contour in the zone of apposition and in the dome was digitized with the software Osiris, and the digitized silhouettes were used for three-dimensional reconstruction with Matlab. Values of length and surface area for the diaphragm, the dome, and the zone of apposition were very similar to those obtained with magnetic resonance imaging. We conclude that satisfactory three-dimensional reconstruction of the in vivo diaphragm may be obtained with spiral computed tomography, allowing accurate measurements of muscle length, surface area, and shape.



2019 ◽  
Vol 18 (1) ◽  
pp. 1-11 ◽  
Author(s):  
S. Haber-Pohlmeier ◽  
C. Tötzke ◽  
E. Lehmann ◽  
N. Kardjilov ◽  
A. Pohlmeier ◽  
...  




2011 ◽  
Vol 2011 ◽  
pp. 1-4 ◽  
Author(s):  
Richard D. White ◽  
Avinash K. Kanodia ◽  
Esther M. Sammler ◽  
John N. Brunton ◽  
Craig A. Heath

We report a case of temporal lobe epilepsy and incomplete Brown-Sequard syndrome of the thoracic cord. Computed tomography and magnetic resonance (MR) imaging showed multiple supratentorial masses with the classical radiological appearances of multifocal dysembryoplastic neuroepithelial tumour (DNET). Spinal MR imaging revealed intradural lipomas, not previously reported in association with multifocal DNET. Presentation and imaging findings are discussed along with classification and natural history of the tumour.



Sign in / Sign up

Export Citation Format

Share Document