scholarly journals Application of Fiber Made from Bark of Salak (Salacca Zalacca) Tree as Reinforcement in Polymer Matrix Composites

Author(s):  
Andromeda Dwi Laksono ◽  
Gusti Umindya Tajalla ◽  
Oliever Andrea Parusha

<p class="02abstracttext">Although Indonesia is abundant supply of salak (Salacca zalacca) fruit, bark of salak is not yet advanced utilized. This work therefore chracterized its fiber and process it into polymer matrix composites. The study was conducted using varied chemical treatments. Delignification using NaOH solution with concentration of 1%, 5%, 10% with 3 hours immersion time. Bleaching treatment was using H<sub>2</sub>O<sub>2</sub> media with varied immersion time at 30, 60 and 90 minutes. Tensile tests, impact tests, microscopic image test using scanning electron microscopy (SEM) and chemical composition test using fourier-transform infra-red (FTIR) spectroscopy were carried out in this work. This work showed that optimal delignification treatment can be found when 5% NaOH concentration was used. The corresponding ultimate tensile strength and impact strength were 25.47 MPa and 11.95 kJ/m<sup>2</sup>, respectively. The optimal bleaching treatment was 90 minutes immersion. The results of SEM image analysis showed that the salak midrib fiber composite without treatment has a lousy interface. Meanwhile, fiber with delignification treatment only has reasonable good interface and fiber with delignation treatment followed by bleaching treatment has excellent interface. FTIR test results showed that the salak midrib fiber composite without treatment had a cellulose component although hemicellulose and lignin levels still dominated. The delignification treatment had succesfully broken the lignin-specific C = O bond but still could not eliminated hemicellulose and lignin bond. In comparison, bleaching treatment reduced intensity of OH intensity, CH and CO which are typical hemicellulose and lignin functional groups. Based on the results of the study, salak midrib fiber with delignification chemical treatment using 5% NaOH for 3 hours followed by bleaching treatment using 2% H<sub>2</sub>O<sub>2</sub> for 90 minutes was the best treatment.</p>

2019 ◽  
Vol 3 (2) ◽  
pp. 36-45
Author(s):  
Oliever

Bark midrib are not fully utilized. Utilize the characterization of the fiber and process it into polymer composites with natural fiber reinforcement. The study was conducted using a variety of chemical treatments in the form of bark midribs without treatment, delignification treatment that is immersion using NaOH media concentration of 1%, 5%, 10% with 3 hours immersion time and bleaching treatment using H2O2 media 2% concentration with immersion time 30, 60 and 90 minutes. In obtaining suitable properties, tensile tests, impact tests, Scanning Electron Microscopy (SEM) images, and Fourier-Transform Infra-Red (FTIR) tests are performed. Optimal delignification treatment at 5% NaOH concentration with a tensile test value of 25.47 MPa (increasing 76.86%) and an impact test value of 11.95 kJ/m2 (increasing 11.45%). The optimal bleaching treatment at 90 minutes immersion with a tensile test value of 35.09 MPa (increased 36.36%) and impact test value of 13.77 kJ/m2 (increased 15.22%). The results of SEM images show that the bark midrib fiber composite without treatment has a lousy interface, delignification treatment with a reasonable good interface, and bleaching treatment with an excellent interface. FTIR test results showed that the bark midrib fiber composite without treatment had a cellulose component but hemicellulose and lignin levels still dominated. Based on the results of the study, bark midrib fiber with delignification chemical treatment using 5% NaOH for 3 hours followed by bleaching treatment using 2% H2O2 for 90 minutes is the treatment with the best results and then applied to a natural fiber composite product.


Author(s):  
Ru-Min Wang ◽  
Shui-Rong Zheng ◽  
Ya-Ping Zheng

2021 ◽  
Vol 1107 (1) ◽  
pp. 012057
Author(s):  
Fadare Olugbenga Babatunde ◽  
Adewuyi Benjamin Omotayo ◽  
Oladele Isiaka Oluwole ◽  
Kingsley Ukoba

Sign in / Sign up

Export Citation Format

Share Document