On the Structure of Finite Level and ω-Decomposable Borel Functions

2013 ◽  
Vol 78 (4) ◽  
pp. 1257-1287 ◽  
Author(s):  
Luca Motto Ros

AbstractWe give a full description of the structure under inclusion of all finite level Borel classes of functions, and provide an elementary proof of the well-known fact that not every Borel function can be written as a countable union of Σα0-measurable functions (for every fixed 1 ≤ α < ω1). Moreover, we present some results concerning those Borel functions which are ω-decomposable into continuous functions (also called countably continuous functions in the literature): such results should be viewed as a contribution towards the goal of generalizing a remarkable theorem of Jayne and Rogers to all finite levels, and in fact they allow us to prove some restricted forms of such generalizations. We also analyze finite level Borel functions in terms of composition of simpler functions, and we finally present an application to Banach space theory.

Author(s):  
Salem M. A. Sahab

AbstractLet Q denote the Banach space (under the sup norm) of quasi-continuous functions on the unit interval [0, 1]. Let ℳ denote the closed convex cone comprised of monotone nondecreasing functions on [0, 1]. For f and g in Q and 1 < p < ∞, let hp denote the best Lp-simultaneous approximant of f and g by elements of ℳ. It is shown that hp converges uniformly as p → ∞ to a best L∞-simultaneous approximant of f and g by elements of ℳ. However, this convergence is not true in general for any pair of bounded Lebesgue measurable functions. If f and g are continuous, then each hp is continuous; so is limp→∞ hp = h∞.


Author(s):  
Litan Yan ◽  
Junfeng Liu ◽  
Chao Chen

In this paper, we study the generalized quadratic covariation of f(BH) and BH defined by [Formula: see text] in probability, where f is a Borel function and BH is a fractional Brownian motion with Hurst index 0 < H < 1/2. We construct a Banach space [Formula: see text] of measurable functions such that the generalized quadratic covariation exists in L2(Ω) and the Bouleau–Yor identity takes the form [Formula: see text] provided [Formula: see text], where [Formula: see text] is the weighted local time of BH. These are also extended to the time-dependent case, and as an application we give the identity between the generalized quadratic covariation and the 4-covariation [g(BH), BH, BH, BH] when [Formula: see text].


1988 ◽  
Vol 38 (3) ◽  
pp. 401-411 ◽  
Author(s):  
Salem M.A. Sahab

Let Ω denote the closed interval [0, 1] and let bA denote the set of all bounded, approximately continuous functions on Ω. Let Q denote the Banach space (sup norm) of quasi-continuous functions on Ω. Let M denote the closed convex cone in Q comprised of non-decreasing functions. Let hp, 1 < p < ∞, denote the best Lp-simultaneaous approximation to the bounded measurable functions f and g by elements of M. It is shown that if f and g are elements of Q, then hp converges unifornily to a best L1-simultaneous approximation of f and g. We also show that if f and g are in bA, then hp is continuous.


1989 ◽  
Vol 41 (1) ◽  
pp. 132-162 ◽  
Author(s):  
J. G. Llavona ◽  
J. A. Jaramillo

We are concerned in this paper with the study of homomorphisms between different algebras of continuous functions, especially the algebras of real functions which are either weakly continuous on bounded sets or weakly uniformly continuous on bounded sets on a Banach space (see definitions below).These spaces of weakly [uniformly] continuous functions appeared in relation with some questions in Infinite-dimensional Approximation Theory (see [4], [6], [11], [12], [13] and [16]); and since the structure of these function spaces is closely related with properties of different weak topologies (the bounded-weak and bounded-weak* topologies, respectively) and with the structure of Banach spaces on which they are defined, their study also presents interest from the point of view of Banach space theory, as can be seen in [2], [12] or [17].


2005 ◽  
Vol 12 (4) ◽  
pp. 763-768
Author(s):  
Artur Wachowicz

Abstract Let 𝐶 = 𝐶[0, 1] denote the Banach space of continuous real functions on [0, 1] with the sup norm and let 𝐶* denote the topological subspace of 𝐶 consisting of functions with values in [0, 1]. We investigate the preimages of residual sets in 𝐶 under the operation of superposition Φ : 𝐶 × 𝐶* → 𝐶, Φ(𝑓, 𝑔) = 𝑓 ○ 𝑔. Their behaviour can be different. We show examples when the preimages of residual sets are nonresidual of second category, or even nowhere dense, and examples when the preimages of nontrivial residual sets are residual.


Analysis ◽  
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Siran Li

AbstractIt is a well-known fact – which can be shown by elementary calculus – that the volume of the unit ball in \mathbb{R}^{n} decays to zero and simultaneously gets concentrated on the thin shell near the boundary sphere as n\nearrow\infty. Many rigorous proofs and heuristic arguments are provided for this fact from different viewpoints, including Euclidean geometry, convex geometry, Banach space theory, combinatorics, probability, discrete geometry, etc. In this note, we give yet another two proofs via the regularity theory of elliptic partial differential equations and calculus of variations.


2007 ◽  
Vol 49 (1) ◽  
pp. 145-154
Author(s):  
BRUCE A. BARNES

Abstract.LetTbe a bounded linear operator on a Banach spaceW, assumeWandYare in normed duality, and assume thatThas adjointT†relative toY. In this paper, conditions are given that imply that for all λ≠0, λ−Tand λ −T†maintain important standard operator relationships. For example, under the conditions given, λ −Thas closed range if, and only if, λ −T†has closed range.These general results are shown to apply to certain classes of integral operators acting on spaces of continuous functions.


2013 ◽  
Vol 21 (3) ◽  
pp. 185-191
Author(s):  
Keiko Narita ◽  
Noboru Endou ◽  
Yasunari Shidama

Summary In this article, we described basic properties of Riemann integral on functions from R into Real Banach Space. We proved mainly the linearity of integral operator about the integral of continuous functions on closed interval of the set of real numbers. These theorems were based on the article [10] and we referred to the former articles about Riemann integral. We applied definitions and theorems introduced in the article [9] and the article [11] to the proof. Using the definition of the article [10], we also proved some theorems on bounded functions.


Sign in / Sign up

Export Citation Format

Share Document