Natural deduction

2021 ◽  
pp. 65-100
Author(s):  
Paolo Mancosu ◽  
Sergio Galvan ◽  
Richard Zach

Natural deduction is a philosophically as well as pedagogically important logical proof system. This chapter introduces Gerhard Gentzen’s original system of natural deduction for minimal, intuitionistic, and classical predicate logic. Natural deduction reflects the ways we reason under assumption in mathematics and ordinary life. Its rules display a pleasing symmetry, in that connectives and quantifiers are each governed by a pair of introduction and elimination rules. After providing several examples of how to find proofs in natural deduction, it is shown how deductions in such systems can be manipulated and measured according to various notions of complexity, such as size and height. The final section shows that the axiomatic system of classical logic presented in Chapter 2 and the system of natural deduction for classical logic introduced in this chapter are equivalent.

2003 ◽  
Vol 68 (4) ◽  
pp. 1403-1414 ◽  
Author(s):  
H. Kushida ◽  
M. Okada

AbstractIt is well known that the modal logic S5 can be embedded in the classical predicate logic by interpreting the modal operator in terms of a quantifier. Wajsberg [10] proved this fact in a syntactic way. Mints [7] extended this result to the quantified version of S5; using a purely proof-theoretic method he showed that the quantified S5 corresponds to the classical predicate logic with one-sorted variable. In this paper we extend Mints' result to the basic modal logic S4; we investigate the correspondence between the quantified versions of S4 (with and without the Barcan formula) and the classical predicate logic (with one-sorted variable). We present a purely proof-theoretic proof-transformation method, reducing an LK-proof of an interpreted formula to a modal proof.


2021 ◽  
Author(s):  
Mikhail Rybakov ◽  
Dmitry Shkatov

Abstract We obtain an effective embedding of the classical predicate logic into the logic of partial quasiary predicates. The embedding has the property that an image of a non-theorem of the classical logic is refutable in a model of the logic of partial quasiary predicates that has the same cardinality as the classical countermodel of the non-theorem. Therefore, we also obtain an embedding of the classical predicate logic of finite models into the logic of partial quasiary predicates over finite structures. As a consequence, we prove that the logic of partial quasiary predicates is undecidable—more precisely, $\varSigma ^0_1$-complete—over arbitrary structures and not recursively enumerable—more precisely, $\varPi ^0_1$-complete—over finite structures.


2004 ◽  
Vol 14 (4) ◽  
pp. 507-526 ◽  
Author(s):  
SARA NEGRI ◽  
JAN VON PLATO

A formulation of lattice theory as a system of rules added to sequent calculus is given. The analysis of proofs for the contraction-free calculus of classical predicate logic known as G3c extends to derivations with the mathematical rules of lattice theory. It is shown that minimal derivations of quantifier-free sequents enjoy a subterm property: all terms in such derivations are terms in the endsequent.An alternative formulation of lattice theory as a system of rules in natural deduction style is given, both with explicit meet and join constructions and as a relational theory with existence axioms. A subterm property for the latter extends the standard decidable classes of quantificational formulas of pure predicate calculus to lattice theory.


Mathematics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 385
Author(s):  
Hyeonseung Im

A double negation translation (DNT) embeds classical logic into intuitionistic logic. Such translations correspond to continuation passing style (CPS) transformations in programming languages via the Curry-Howard isomorphism. A selective CPS transformation uses a type and effect system to selectively translate only nontrivial expressions possibly with computational effects into CPS functions. In this paper, we review the conventional call-by-value (CBV) CPS transformation and its corresponding DNT, and provide a logical account of a CBV selective CPS transformation by defining a selective DNT via the Curry-Howard isomorphism. By using an annotated proof system derived from the corresponding type and effect system, our selective DNT translates classical proofs into equivalent intuitionistic proofs, which are smaller than those obtained by the usual DNTs. We believe that our work can serve as a reference point for further study on the Curry-Howard isomorphism between CPS transformations and DNTs.


2015 ◽  
Vol 8 (2) ◽  
pp. 296-305 ◽  
Author(s):  
NISSIM FRANCEZ

AbstractThe paper proposes an extension of the definition of a canonical proof, central to proof-theoretic semantics, to a definition of a canonical derivation from open assumptions. The impact of the extension on the definition of (reified) proof-theoretic meaning of logical constants is discussed. The extended definition also sheds light on a puzzle regarding the definition of local-completeness of a natural-deduction proof-system, underlying its harmony.


2010 ◽  
Vol 3 (2) ◽  
pp. 262-272 ◽  
Author(s):  
KLAUS GLASHOFF

Since Frege’s predicate logical transcription of Aristotelian categorical logic, the standard semantics of Aristotelian logic considers terms as standing for sets of individuals. From a philosophical standpoint, this extensional model poses problems: There exist serious doubts that Aristotle’s terms were meant to refer always to sets, that is, entities composed of individuals. Classical philosophy up to Leibniz and Kant had a different view on this question—they looked at terms as standing for concepts (“Begriffe”). In 1972, Corcoran presented a formal system for Aristotelian logic containing a calculus of natural deduction, while, with respect to semantics, he still made use of an extensional interpretation. In this paper we deal with a simple intensional semantics for Corcoran’s syntax—intensional in the sense that no individuals are needed for the construction of a complete Tarski model of Aristotelian syntax. Instead, we view concepts as containing or excluding other, “higher” concepts—corresponding to the idea which Leibniz used in the construction of his characteristic numbers. Thus, this paper is an addendum to Corcoran’s work, furnishing his formal syntax with an adequate semantics which is free from presuppositions which have entered into modern interpretations of Aristotle’s theory via predicate logic.


2014 ◽  
Vol 7 (3) ◽  
pp. 455-483 ◽  
Author(s):  
MAJID ALIZADEH ◽  
FARZANEH DERAKHSHAN ◽  
HIROAKIRA ONO

AbstractUniform interpolation property of a given logic is a stronger form of Craig’s interpolation property where both pre-interpolant and post-interpolant always exist uniformly for any provable implication in the logic. It is known that there exist logics, e.g., modal propositional logic S4, which have Craig’s interpolation property but do not have uniform interpolation property. The situation is even worse for predicate logics, as classical predicate logic does not have uniform interpolation property as pointed out by L. Henkin.In this paper, uniform interpolation property of basic substructural logics is studied by applying the proof-theoretic method introduced by A. Pitts (Pitts, 1992). It is shown that uniform interpolation property holds even for their predicate extensions, as long as they can be formalized by sequent calculi without contraction rules. For instance, uniform interpolation property of full Lambek predicate calculus, i.e., the substructural logic without any structural rule, and of both linear and affine predicate logics without exponentials are proved.


Sign in / Sign up

Export Citation Format

Share Document