scholarly journals Strong convergence in finite model theory

2002 ◽  
Vol 67 (3) ◽  
pp. 1083-1092
Author(s):  
Wafik Boulos Lotfallah

AbstractIn [9] we introduced a new framework for asymptotic probabilities, in which a σ-additive measure is defined on the sample space of all sequences of finite models, where the universe of , is {1,2,…,n}. In this framework we investigated the strong 0-1 law for sentences, which states that each sentence either holds in eventually almost surely or fails in eventually almost surely.In this paper we define the strong convergence law for formulas, which carries over the ideas of the strong 0-1 law to formulas with free variables, and roughly states that for each formula ϕ(x), the fraction of tuples a in , which satisfy the formula ϕ(x), almost surely has a limit as n tends to infinity.We show that the infinitary logic with finitely many variables has the strong convergence law for formulas for the uniform measure, and further characterize the measures on random graphs for which the strong convergence law holds.

2000 ◽  
Vol 65 (4) ◽  
pp. 1686-1704
Author(s):  
Wafik Boulos Lotfallah

AbstractWe introduce a new framework for asymptotic probabilities of sentences, in which we have a σ-additive measure on the sample space of all sequences A = {} of finite models, where the universe of is {1,2, …, n}. and use this framework to strengthen 0-1 laws for logics.


1996 ◽  
Vol 2 (4) ◽  
pp. 422-443 ◽  
Author(s):  
Lauri Hella ◽  
Phokion G. Kolaitis ◽  
Kerkko Luosto

AbstractWe introduce a new framework for classifying logics on finite structures and studying their expressive power. This framework is based on the concept of almost everywhere equivalence of logics, that is to say, two logics having the same expressive power on a class of asymptotic measure 1. More precisely, if L, L′ are two logics and μ is an asymptotic measure on finite structures, then L ≡a.e.L′ (μ) means that there is a class C of finite structures with μ(C) = 1 and such that L and L′ define the same queries on C. We carry out a systematic investigation of ≡a.e. with respect to the uniform measure and analyze the ≡a.e.-equivalence classes of several logics that have been studied extensively in finite model theory. Moreover, we explore connections with descriptive complexity theory and examine the status of certain classical results of model theory in the context of this new framework.


Author(s):  
Heinz-Dieter Ebbinghaus ◽  
Jörg Flum

Author(s):  
Tim Button ◽  
Sean Walsh

This chapter explores Leibniz's principle of the Identity of Indiscernibles. Model theory supplies us with the resources to distinguish between many different notions of indiscernibility; we can vary: (a) the primitive ideology (b) the background logic and (c) the grade of discernibility. We use these distinctions to discuss the possibility of singling-out “indiscernibles”. And we then use these to distinctions to explicate Leibniz's famous principle. While model theory allows us to make this principle precise, the sheer number of different precise versions of this principle made available by model theory can serve to mitigate some of the initial excitement of this principle. We round out the chapter with two technical topics: indiscernibility in infinitary logic, and the relation between indiscernibility, orders, and stability.


Author(s):  
Heinz-Dieter Ebbinghaus ◽  
Jörg Flum

2002 ◽  
Vol 8 (3) ◽  
pp. 380-403 ◽  
Author(s):  
Eric Rosen

Model theory is concerned mainly, although not exclusively, with infinite structures. In recent years, finite structures have risen to greater prominence, both within the context of mainstream model theory, e.g., in work of Lachlan, Cherlin, Hrushovski, and others, and with the advent of finite model theory, which incorporates elements of classical model theory, combinatorics, and complexity theory. The purpose of this survey is to provide an overview of what might be called the model theory of finite structures. Some topics in finite model theory have strong connections to theoretical computer science, especially descriptive complexity theory (see [26, 46]). In fact, it has been suggested that finite model theory really is, or should be, logic for computer science. These connections with computer science will, however, not be treated here.It is well-known that many classical results of ‘infinite model theory’ fail over the class of finite structures, including the compactness and completeness theorems, as well as many preservation and interpolation theorems (see [35, 26]). The failure of compactness in the finite, in particular, means that the standard proofs of many theorems are no longer valid in this context. At present, there is no known example of a classical theorem that remains true over finite structures, yet must be proved by substantially different methods. It is generally concluded that first-order logic is ‘badly behaved’ over finite structures.From the perspective of expressive power, first-order logic also behaves badly: it is both too weak and too strong. Too weak because many natural properties, such as the size of a structure being even or a graph being connected, cannot be defined by a single sentence. Too strong, because every class of finite structures with a finite signature can be defined by an infinite set of sentences. Even worse, every finite structure is defined up to isomorphism by a single sentence. In fact, it is perhaps because of this last point more than anything else that model theorists have not been very interested in finite structures. Modern model theory is concerned largely with complete first-order theories, which are completely trivial here.


Sign in / Sign up

Export Citation Format

Share Document