Completeness and incompleteness for intuitionistic logic

2008 ◽  
Vol 73 (4) ◽  
pp. 1315-1327 ◽  
Author(s):  
Charles Mccarty

AbstractWe call a logic regular for a semantics when the satisfaction predicate for at least one of its nontheorems is closed under double negation. Such intuitionistic theories as second-order Heyting arithmetic HAS and the intuitionistic set theory IZF prove completeness for no regular logics, no matter how simple or complicated. Any extensions of those theories proving completeness for regular logics are classical, i.e., they derive the tertium non datur. When an intuitionistic metatheory features anticlassical principles or recognizes that a logic regular for a semantics is nonclassical, it proves explicitly that the logic is incomplete with respect to that semantics. Logics regular relative to Tarski, Beth and Kripke semantics form a large collection that includes propositional and predicate intuitionistic, intermediate and classical logics. These results are corollaries of a single theorem. A variant of its proof yields a generalization of the Gödel-Kreisel Theorem linking weak completeness for intuitionistic predicate logic to Markov's Principle.

Author(s):  
Jaykov Foukzon

In this paper intuitionistic set theory INC#∞# in infinitary set theoretical language is considered. External induction principle in nonstandard intuitionistic arithmetic were derived. Non trivial application in number theory is considered.The Goldbach-Euler theorem is obtained without any references to Catalan conjecture. Main results are: (i) number ee is transcendental; (ii) the both numbers e + π and e − π are irrational.


Author(s):  
Wilfried Sieg

Proof theory is a branch of mathematical logic founded by David Hilbert around 1920 to pursue Hilbert’s programme. The problems addressed by the programme had already been formulated, in some sense, at the turn of the century, for example, in Hilbert’s famous address to the First International Congress of Mathematicians in Paris. They were closely connected to the set-theoretic foundations for analysis investigated by Cantor and Dedekind – in particular, to difficulties with the unrestricted notion of system or set; they were also related to the philosophical conflict with Kronecker on the very nature of mathematics. At that time, the central issue for Hilbert was the ‘consistency of sets’ in Cantor’s sense. Hilbert suggested that the existence of consistent sets, for example, the set of real numbers, could be secured by proving the consistency of a suitable, characterizing axiom system, but indicated only vaguely how to give such proofs model-theoretically. Four years later, Hilbert departed radically from these indications and proposed a novel way of attacking the consistency problem for theories. This approach required, first of all, a strict formalization of mathematics together with logic; then, the syntactic configurations of the joint formalism would be considered as mathematical objects; finally, mathematical arguments would be used to show that contradictory formulas cannot be derived by the logical rules. This two-pronged approach of developing substantial parts of mathematics in formal theories (set theory, second-order arithmetic, finite type theory and still others) and of proving their consistency (or the consistency of significant sub-theories) was sharpened in lectures beginning in 1917 and then pursued systematically in the 1920s by Hilbert and a group of collaborators including Paul Bernays, Wilhelm Ackermann and John von Neumann. In particular, the formalizability of analysis in a second-order theory was verified by Hilbert in those very early lectures. So it was possible to focus on the second prong, namely to establish the consistency of ‘arithmetic’ (second-order number theory and set theory) by elementary mathematical, ‘finitist’ means. This part of the task proved to be much more recalcitrant than expected, and only limited results were obtained. That the limitation was inevitable was explained in 1931 by Gödel’s theorems; indeed, they refuted the attempt to establish consistency on a finitist basis – as soon as it was realized that finitist considerations could be carried out in a small fragment of first-order arithmetic. This led to the formulation of a general reductive programme. Gentzen and Gödel made the first contributions to this programme by establishing the consistency of classical first-order arithmetic – Peano arithmetic (PA) – relative to intuitionistic arithmetic – Heyting arithmetic. In 1936 Gentzen proved the consistency of PA relative to a quantifier-free theory of arithmetic that included transfinite recursion up to the first epsilon number, ε0; in his 1941 Yale lectures, Gödel proved the consistency of the same theory relative to a theory of computable functionals of finite type. These two fundamental theorems turned out to be most important for subsequent proof-theoretic work. Currently it is known how to analyse, in Gentzen’s style, strong subsystems of second-order arithmetic and set theory. The first prong of proof-theoretic investigations, the actual formal development of parts of mathematics, has also been pursued – with a surprising result: the bulk of classical analysis can be developed in theories that are conservative over (fragments of) first-order arithmetic.


2014 ◽  
Vol 7 (1) ◽  
pp. 60-72 ◽  
Author(s):  
GRIGORY K. OLKHOVIKOV ◽  
PETER SCHROEDER-HEISTER

AbstractIn proof-theoretic semantics of intuitionistic logic it is well known that elimination rules can be generated from introduction rules in a uniform way. If introduction rules discharge assumptions, the corresponding elimination rule is a rule of higher level, which allows one to discharge rules occurring as assumptions. In some cases, these uniformly generated elimination rules can be equivalently replaced with elimination rules that only discharge formulas or do not discharge any assumption at all—they can be flattened in a terminology proposed by Read. We show by an example from propositional logic that not all introduction rules have flat elimination rules. We translate the general form of flat elimination rules into a formula of second-order propositional logic and demonstrate that our example is not equivalent to any such formula. The proof uses elementary techniques from propositional logic and Kripke semantics.


Author(s):  
Jaykov Foukzon

In this paper intuitionistic set theory INC# ∞# in infinitary set theoretical language is considered. External induction principle in nonstandard intuitionistic arithmetic were derived. Non trivial application in number theory is considered.The Goldbach-Euler theorem is obtained without anyreferences to Catalan conjecture.


2009 ◽  
Vol 74 (2) ◽  
pp. 689-692
Author(s):  
Charles McCarty

Since intuitionistic sets are not generally stable – their membership relations are not always closed under double negation – the open sets of a topology cannot be recovered from the closed sets of that topology via complementation, at least without further ado. Dana Scott asked, first, whether it is possible intuitionistically for two distinct topologies, given as collections of open sets on the same carrier, to share their closed sets. Second, he asked whether there can be intuitionistic functions that are closed continuous in that the inverse of every closed set is closed without being continuous in the usual, open sense. Here, we prove that, as far as intuitionistic set theory is concerned, there can be infinitely-many distinct topologies on the same carrier sharing a single collection of closed sets. The proof employs Heyting-valued sets, and demonstrates that the intuitionistic set theory IZF [4, 624], as well as the theory IZF plus classical elementary arithmetic, are both consistent with the statement that infinitely many topologies on the set of natural numbers share the same closed sets. Without changing models, we show that these formal theories are also consistent with the statement that there are infinitely many endofunctions on the natural numbers that are closed continuous but not open continuous with respect to a single topology.For each prime k ∈ ω, let Ak be this ω-sequence of sets open in the standard topology on the closed unit interval: for each n ∈ ω,


1997 ◽  
Vol 62 (2) ◽  
pp. 506-528 ◽  
Author(s):  
Satoko Titani

Gentzen's sequential system LJ of intuitionistic logic has two symbols of implication. One is the logical symbol → and the other is the metalogical symbol ⇒ in sequentsConsidering the logical system LJ as a mathematical object, we understand that the logical symbols ∧, ∨, →, ¬, ∀, ∃ are operators on formulas, and ⇒ is a relation. That is, φ ⇒ Ψ is a metalogical sentence which is true or false, on the understanding that our metalogic is a classical logic. In other words, we discuss the logical system LJ in the classical set theory ZFC, in which φ ⇒ Ψ is a sentence.The aim of this paper is to formulate an intuitionistic set theory together with its metatheory. In Takeuti and Titani [6], we formulated an intuitionistic set theory together with its metatheory based on intuitionistic logic. In this paper we postulate that the metatheory is based on classical logic.Let Ω be a cHa. Ω can be a truth value set of a model of LJ. Then the logical symbols ∧, ∨, →, ¬, ∀x, ∃x are interpreted as operators on Ω, and the sentence φ ⇒ Ψ is interpreted as 1 (true) or 0 (false). This means that the metalogical symbol ⇒ also can be expressed as a logical operators such that φ ⇒ Ψ is interpreted as 1 or 0.


1984 ◽  
Vol 49 (4) ◽  
pp. 1339-1349 ◽  
Author(s):  
D. Van Dalen

Among the more traditional semantics for intuitionistic logic the Beth and the Kripke semantics seem well-suited for direct manipulations required for the derivation of metamathematical results. In particular Smoryński demonstrated the usefulness of Kripke models for the purpose of obtaining closure properties for first-order arithmetic, [S], and second-order arithmetic, [J-S]. Weinstein used similar techniques to handle intuitionistic analysis, [W]. Since, however, Beth-models seem to lend themselves better for dealing with analysis, cf. [D], we have developed a somewhat more liberal semantics, that shares the features of both Kripke and Beth semantics, in order to obtain analogues of Smoryński's collecting operations, which we will call Smoryński-glueing, in line with the categorical tradition.


1984 ◽  
Vol 49 (3) ◽  
pp. 851-866 ◽  
Author(s):  
Gaisi Takeuti ◽  
Satoko Titani

In 1965 Zadeh introduced the concept of fuzzy sets. The characteristic of fuzzy sets is that the range of truth value of the membership relation is the closed interval [0, 1] of real numbers. The logical operations ⊃, ∼ on [0, 1] which are used for Zadeh's fuzzy sets seem to be Łukasiewciz's logic, where p ⊃ q = min(1, 1 − p + q), ∼ p = 1 − p. L. S. Hay extended in [4] Łukasiewicz's logic to a predicate logic and proved its weak completeness theorem: if P is valid then P + Pn is provable for each positive integer n. She also showed that one can without losing consistency obtain completeness of the system by use of additional infinitary rule.Now, from a logical standpoint, each logic has its corresponding set theory in which each logical operation is translated into a basic operation for set theory; namely, the relation ⊆ and = on sets are translation of the logical operations → and ↔. For Łukasiewicz's logic, P Λ (P ⊃ Q). ⊃ Q is not valid. Translating it to the set version, it follows that the axiom of extensionality does not hold. Thus this very basic principle of set theory is not valid in the corresponding set theory.


2008 ◽  
Vol 1 (1) ◽  
pp. 81-96 ◽  
Author(s):  
LUCA INCURVATI

Several philosophers have argued that the logic of set theory should be intuitionistic on the grounds that the open-endedness of the set concept demands the adoption of a nonclassical semantics. This paper examines to what extent adopting such a semantics has revisionary consequences for the logic of our set-theoretic reasoning. It is shown that in the context of the axioms of standard set theory, an intuitionistic semantics sanctions a classical logic. A Kripke semantics in the context of a weaker axiomatization is then considered. It is argued that this semantics vindicates an intuitionistic logic only insofar as certain constraints are put on its interpretation. Wider morals are drawn about the restrictions that this places on the shape of arguments for an intuitionistic revision of the logic of set theory.


2000 ◽  
Vol 65 (4) ◽  
pp. 1785-1812 ◽  
Author(s):  
Jeremy Avigad

AbstractA number of classical theories are interpreted in analogous theories that are based on intuitionistic logic. The classical theories considered include subsystems of first- and second-order arithmetic, bounded arithmetic, and admissible set theory.


Sign in / Sign up

Export Citation Format

Share Document