scholarly journals Reduction of electric power losses by the reactive power compensation unit at the point of AC electric traction network sectioning

2019 ◽  
Vol 78 (5) ◽  
pp. 297-302
Author(s):  
Leonid A. German ◽  
Aleksander S. Serebryakov

Changes of electric traction network with regulated and not-regulated reactive power compensation units (CU) are required due to switching on the reactive power static generators at the AC electric traction network sectioning points the specifying calculations of the reactive power. The method of calculation of power losses in the traction network with regulated and not-regulated cross capacity compensation units at the sectioning point was developed. The main positive effect of CU at the sectioning point is increasing of the carrying capacity of the railroad sections. However, calculation of CU effectiveness for reduction of electric power losses, as well as calculation of continuously controlled CU requires appropriate calculations. It is demonstrated that CU effectiveness at the sectioning points of reactive power compensation is reduced in connection with distribution of the draft load; CU regulation effectiveness is also reduced as a response to increase of the carrying capacity of the railroad section, which allows assessing the proposed calculation formulae. Presented examples of calculation for the actual baseline data demonstrate that full losses in the traction network (assumed as 100%) can be reduced by using of CU of the sectioning point up to 21% maximum with continuously controlled units and up to 13.4% with uncontrolled CU. As automatics of the reactive power static generator is designed for increasing the carrying capacity of the railroad, its operation frequently complies with the reactive power overcompensation regime when losses in the traction network are increased.

Vestnik MEI ◽  
2021 ◽  
Vol 3 (3) ◽  
pp. 11-18
Author(s):  
Nailia Sh. Chemborisova ◽  
◽  
Ivan D. Chernenkov ◽  

The problem of selecting the electric power system control nodes is studied. By performing control of these modes, matters concerned with providing reliable power supply of the required quality to consumers can be settled in the most efficient manner. As an example, a fragment of the electric power system mathematical model used in the Finist mode-setting simulator for a power system dispatch control center operator is considered, which represents a highly branched electrical network consisting of eleven 110 kV nodes, three 220 kV nodes connected with the system, and two generator nodes. A new procedure for selecting the control nodes is proposed, which takes into account a combination of different indicators having different measurement units, dimensions and scales is proposed. These indicators characterize the following properties of power system nodes: the reactive power fraction absorbed at a node, the sensitivity of voltage to reactive load variations, the number of connected power lines, and statistical indicators characterizing the change of voltage at the nodes and reactive power flows for different options of installing the reactive power compensation devices. For combined use of these indicators, they were ranked according to the efficiency of installing reactive power compensation devices in the system. For each indicator, a scale of five ranks (intervals) is set, which determine the preferences (qualitative judgments) of the researcher in evaluating the reactive power compensation devices installation efficiency at the system nodes. The highest rank (5) corresponds to the maximum efficiency, and the lowest rank (1) corresponds to the minimum efficiency. To calculate the individual (integral) priority indicator of installing reactive power compensation devices, the ranks of indicators are added together, and their sum is divided by the product of the number of ranks by the number of the used indicators (features). Based on the calculation results, the rating (location) of each node is determined, and the nodes for installing the reactive power compensation devices are selected according to their effect on ensuring the electric power system operation reliability, active power losses in the network, and voltage regulation. Thus, a new procedure is presented for determining the integral indicators for comprehensively estimating the properties of complex electric power system nodes and selecting the controlled nodes using a system of various indicators. These indicators characterize the studied nodes in terms of the efficiency of installing reactive power compensation devices to reduce active power losses in the network, voltage regulation, and ensuring the electric power system operational reliability. The validity of the results obtained in the study is confirmed by their comparison with the indicators of the balance-conductivity method, which has proven itself in solving problems connected with determining the nodes for controlling electric power system operation modes.


Author(s):  
Sivaraman P. ◽  
Sharmeela C.

Distribution system is the final stage of electric power system, and can be classified based on voltage level, location, number of wires, and types of customers. This chapter explains the various classifications of the distribution system in detail. System reliability is one of the important design concerns for any distribution system. The various methods of design concept to improve reliability are clarified. Reactive power compensation is another main concern in a distribution system. Methods of reactive power compensation are also detailed.


2021 ◽  
Vol 13 (4) ◽  
pp. 267-272
Author(s):  
M. M. Sultanov ◽  
A. V. Strizhichenko ◽  
I. A. Boldyrev ◽  
O. I. Zhelyaskova ◽  
E. A. Voloshin ◽  
...  

Reactive power in the power system negatively affects the operating mode of the electric network, additionally loading high-voltage lines and transformers, which leads to an increase in power losses, as well as to an increase in voltage drops. The influence of active and reactive power components of voltage in the network nodes is different and is overwhelmingly determined by the ratio of active and reactive components of the resistance elements of the electric system. In high-voltage networks, the reactive component of the resistance significantly exceeds the active component, and therefore the flow of reactive current through the network leads to a greater voltage drop than the flow of the active component of the current. The transfer of reactive power can lead to exceeding the normalized voltage range in the load nodes. To reduce power losses and voltage drop in the elements of the electric network, synchronous compensators (SC), static capacitor banks (SCB), static thyristor compensators (STC), controlled shunt reactors (CSR) can be used. The cost of production and transmission of active and reactive power are different, and when choosing the power of reactive power compensation means, it is necessary to take into account the costs and compare them with the resulting effect, which differs for large and small values of reactive power when this is reduced by the same amount. To assess the feasibility of application of compensatory devices, and to choose their type and locations of installation, relevant calculations are required. An empirical criterion is proposed for preliminary assessment of the technical feasibility of reactive power compensation. It enables to identify the network sections and nodes, which require reactive power compensation and should be considered in greater detail.


Author(s):  
Aleksander Marykyn ◽  
Vasiliy Myroshenko

Objective: To analyze transient processes when activating reactive power compensation unit with variable inductance and load bounce in electric traction alternating current network. To determine reactive power control range for possible structural variations of a unit. To choose the most power efficient variant of mutual connection of controlled reactor and capacitor bank with uncontrolled capacity in reactive power compensation unit. To make a conclusion, concerning feedback device application in control system. Methods: Connection diagrams of a unit to an alternating current monophase network. Mutual connection diagrams of controlled reactor and capacitor bank were chosen. Structural variations’ control range analysis of reactive power compensation unit was conducted. In MATLAB Simulink software package, simulation of different bucking out system circuitry was fulfilled. Simulation of compensation unit functioning was carried out for one variant with load bounce in electric traction. Results: It was established that, in case of series connection of controlled reactor and capacitor bank, control range may comprise no more than 15 % of nominal capacity. Starting current of a unit reaches twofold value. Parallel connection makes it possible to control reactive power in a broad band. Starting current in this case reaches fourfold excess of value. It is suggested to use uncontrolled reactor successively with capacitor bank as an additional unit. Such a variant makes it possible to reduce starting current and simultaneously provide filtration of the third current harmonics. Practical importance: A series-parallel variant of compensation unit circuitry seems to be the most perspective for application in electric traction alternating current network.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 182679-182692
Author(s):  
Devender Kumar Saini ◽  
Ravi Kumaran Nair C ◽  
Balaji Venkateswaran Venkatasubramanian ◽  
Monika Yadav

2018 ◽  
Vol 2 ◽  
pp. 52-58
Author(s):  
Vladimir N. TUL’SKY ◽  
◽  
Mohamed Ali Hassan TOLBA ◽  
Artem S. VANIN ◽  
Ahmed A. Zaki DIAB ◽  
...  

Author(s):  
Q. S. Vu ◽  
Bui Vu Minh ◽  
Minh Tran ◽  
N.V. Korovkin

Non-linear loads or load imbalances, etc., are the typical causes of asymmetric operation of three-phase systems. The appearance of inverse (positive) and homopolar (zero) symmetric components cause damage to the systems and electrical equipment and increase the power losses on the transmission lines. Reactive power compensation is one of the solutions that can overcome this asymmetry. The difficulty that exists in many different methods is the optimal calculation of the value of the compensator. In this paper, a new method to overcome these problems is proposed and investigagted. The proposed method is based on the fundamental electrical quantities (voltages and currents) on the controllable values of the static compensation devices and overcoming of the asymmetric operation regime in the three-phase systems.


Sign in / Sign up

Export Citation Format

Share Document