scholarly journals Flexible Architecture: Optimization of Technology and Creativity

2017 ◽  
Vol 9 (3S) ◽  
pp. 510-520
Author(s):  
Dr. Mohd Anas ◽  
Safiullah ◽  
Zeba Nisar
Biosensors ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 15
Author(s):  
Wenhan Liu ◽  
Jiewei Ji ◽  
Sheng Chang ◽  
Hao Wang ◽  
Jin He ◽  
...  

Multi-branch Networks (MBNs) have been successfully applied to myocardial infarction (MI) diagnosis using 12-lead electrocardiograms. However, most existing MBNs share a fixed architecture. The absence of architecture optimization has become a significant obstacle to a more accurate diagnosis for these MBNs. In this paper, an evolving neural network named EvoMBN is proposed for MI diagnosis. It utilizes a genetic algorithm (GA) to automatically learn the optimal MBN architectures. A novel fixed-length encoding method is proposed to represent each architecture. In addition, the crossover, mutation, selection, and fitness evaluation of the GA are defined to ensure the architecture can be optimized through evolutional iterations. A novel Lead Squeeze and Excitation (LSE) block is designed to summarize features from all the branch networks. It consists of a fully-connected layer and an LSE mechanism that assigns weights to different leads. Five-fold inter-patient cross validation experiments on MI detection and localization are performed using the PTB diagnostic database. Moreover, the model architecture learned from the PTB database is transferred to the PTB-XL database without any changes. Compared with existing studies, our EvoMBN shows superior generalization and the efficiency of its flexible architecture is suitable for auxiliary MI diagnosis in real-world.


Author(s):  
Mohamed Awad ◽  
Islam T. Abougindia ◽  
Ahmed Elliethy ◽  
Hussein A. Aly

2021 ◽  
Vol 11 (2) ◽  
pp. 807
Author(s):  
Llanos Tobarra ◽  
Alejandro Utrilla ◽  
Antonio Robles-Gómez ◽  
Rafael Pastor-Vargas ◽  
Roberto Hernández

The employment of modern technologies is widespread in our society, so the inclusion of practical activities for education has become essential and useful at the same time. These activities are more noticeable in Engineering, in areas such as cybersecurity, data science, artificial intelligence, etc. Additionally, these activities acquire even more relevance with a distance education methodology, as our case is. The inclusion of these practical activities has clear advantages, such as (1) promoting critical thinking and (2) improving students’ abilities and skills for their professional careers. There are several options, such as the use of remote and virtual laboratories, virtual reality and game-based platforms, among others. This work addresses the development of a new cloud game-based educational platform, which defines a modular and flexible architecture (using light containers). This architecture provides interactive and monitoring services and data storage in a transparent way. The platform uses gamification to integrate the game as part of the instructional process. The CyberScratch project is a particular implementation of this architecture focused on cybersecurity game-based activities. The data privacy management is a critical issue for these kinds of platforms, so the architecture is designed with this feature integrated in the platform components. To achieve this goal, we first focus on all the privacy aspects for the data generated by our cloud game-based platform, by considering the European legal context for data privacy following GDPR and ISO/IEC TR 20748-1:2016 recommendations for Learning Analytics (LA). Our second objective is to provide implementation guidelines for efficient data privacy management for our cloud game-based educative platform. All these contributions are not found in current related works. The CyberScratch project, which was approved by UNED for the year 2020, considers using the xAPI standard for data handling and services for the game editor, game engine and game monitor modules of CyberScratch. Therefore, apart from considering GDPR privacy and LA recommendations, our cloud game-based architecture covers all phases from game creation to the final users’ interactions with the game.


2003 ◽  
Vol 3 (2) ◽  
pp. 170-173 ◽  
Author(s):  
Karthik Ramani, ◽  
Abhishek Agrawal, and ◽  
Mahendra Babu ◽  
Christoph Hoffmann

New and efficient paradigms for web-based collaborative product design in a global economy will be driven by increased outsourcing, increased competition, and pressures to reduce product development time. We have developed a three-tier (client-server-database) architecture based collaborative shape design system, Computer Aided Distributed Design and Collaboration (CADDAC). CADDAC has a centralized geometry kernel and constraint solver. The server-side provides support for solid modeling, constraint solving operations, data management, and synchronization of clients. The client-side performs real-time creation, modification, and deletion of geometry over the network. In order to keep the clients thin, many computationally intensive operations are performed at the server. Only the graphics rendering pipeline operations are performed at the client-side. A key contribution of this work is a flexible architecture that decouples Application Data (Model), Controllers, Viewers, and Collaboration. This decoupling allows new feature development to be modular and easy to develop and manage.


Sign in / Sign up

Export Citation Format

Share Document