scholarly journals Directed data dissemination to optimize packet delivery rate, delay, and overhead in vehicular ad-hoc networks

2019 ◽  
Vol 2 (12) ◽  
pp. 7-14
Author(s):  
M. J. Mulambia ◽  
2015 ◽  
Vol 764-765 ◽  
pp. 817-821
Author(s):  
Ing Chau Chang ◽  
Yuan Fen Wang ◽  
Chien Hsun Li ◽  
Cheng Fu Chou

This paper adopts a two-mode intersection graph-based routing protocol to support efficient packet forwarding for both dense and sparse vehicular ad hoc networks (VANET). We first create an intersection graph (IG) consisting of all connected road segments, which densities are high enough. Hence, the source vehicle leverages the proposed IG/IG bypass mode to greedily forward unicast packets to the boundary intersection via the least cost path of current IG. We then perform the IG-Ferry mode to spray a limited number of packet copies via relay vehicles to reach the boundary intersection of another IG where the destination vehicle resides. NS2 simulations are conducted to show that the two-mode IG/IG-Ferry outperforms well-known VANET routing protocols, in terms of average packet delivery ratios and end-to-end transmission delays.


2020 ◽  
Vol 2020 ◽  
pp. 1-14 ◽  
Author(s):  
Shujuan Wang ◽  
Qian Zhang ◽  
Shuguang Lu

Vehicular Ad hoc NETworks (VANETs) are becoming an important part of people’s daily life, as they support a wild range of applications and have great potential in critical fields such as accident warning, traffic control and management, infotainment, and value-added services. However, the harsh and stringent transmission environment in VANETs poses a great challenge to the efficient and effective data dissemination for VANETs, which is the essential in supporting and providing the desired applications. To resolve this issue, Instantly Decodable Network Coding (IDNC) technology is applied to stand up to the tough transmission conditions and to advance the performance. This paper proposes a novel admission control method that works well with any IDNC-assisted data dissemination algorithm, to achieve fast and reliable data dissemination in VANETs. Firstly, the proposed admission control strategy classifies the safety-related applications as high priority and the user-related applications as low priority. It then conducts different admission policies on these two prioritized applications’ data. An artfully designed network coding-aware admission policy is proposed to regulate the flow of low-priority data requests and to prevent the network from congestion, through comparing the vectorized distances between the data requests and the encoding packets. Moreover, the carefully planned admission strategy is benefit for maximizing the network coding opportunities by inclining to admit requests which can contribute more to the encoding clique, thus further enhancing the system performance. Simulation results approve that the proposed admission control method achieves clear advantages in terms of delay, deadline miss ratio, and download success ratio.


Author(s):  
Guilherme Maia ◽  
Leandro A. Villas ◽  
Azzedine Boukerche ◽  
Aline C. Viana ◽  
Andre L. L. Aquino ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document