scholarly journals Anticancer Effect of ERM210 on Liver Cancer Cells Through ROS/Mitochondria-dependent Apoptosis Signaling Pathways

In Vivo ◽  
2021 ◽  
Vol 35 (5) ◽  
pp. 2599-2608
Author(s):  
JAIHYUNG LEE ◽  
YI-XI GONG ◽  
DAN-PING XIE ◽  
HYUNJEONG JEONG ◽  
HOYOUNG SEO ◽  
...  
Author(s):  
Candace Miethe ◽  
Linda Torres ◽  
Megan Zamora ◽  
Ramona S. Price

Abstract Objectives Visfatin is found in adipose tissue and is referred to as nicotinamide phosphoribosyltransferase (Nampt). Visfatin has anti-apoptotic, proliferative, and metastatic properties and may mediate its effects via ERK and PI3K/Akt signaling. Studies have yet to determine whether inhibition of kinase signaling will suppress visfatin-induced liver cancer. The purpose of this study was to determine which signaling pathways visfatin may promote liver cancer progression. Methods HepG2 and SNU-449 liver cancer cells were exposed to visfatin with or without ERK or PI3K/Akt inhibitor, or both inhibitors combined. These processes that were assessed: proliferation, reactive oxygen species (ROS), lipogenesis, invasion, and matrix metalloproteinase (MMP). Results Inhibition of PI3K/Akt and combination of inhibitors suppressed visfatin-induced viability. ERK inhibition in HepG2 cells decreased visfatin-induced proliferation. ERK inhibitor alone or in combination with PI3K inhibitors effectively suppressed MMP-9 secretion and invasion in liver cancer cells. PI3K and ERK inhibition and PI3K inhibition alone blocked visfatin’s ROS production in SNU-449 cells. These results corresponded with a decrease in phosphorylated Akt and ERK, β-catenin, and fatty acid synthase. Conclusions Akt and ERK inhibition differentially regulated physiological changes in liver cancer cells. Inhibition of Akt and ERK signaling pathways suppressed visfatin-induced invasion, viability, MMP-9 activation, and ROS production.


Author(s):  
Changhao Fu ◽  
Lu Wang ◽  
Geer Tian ◽  
Chen Zhang ◽  
Yuanyuan Zhao ◽  
...  

2015 ◽  
Vol 47 (6) ◽  
pp. 2240-2246 ◽  
Author(s):  
SHU-LING HSIEH ◽  
CHI-TSAI CHEN ◽  
JYH-JYE WANG ◽  
YU-HAO KUO ◽  
CHIEN-CHUN LI ◽  
...  

2017 ◽  
Vol 474 (20) ◽  
pp. 3391-3402 ◽  
Author(s):  
Jiro Ogura ◽  
Seiji Miyauchi ◽  
Kazumi Shimono ◽  
Shengping Yang ◽  
Sathisha Gonchigar ◽  
...  

Carbidopa is used with l-DOPA (l-3,4-dihydroxyphenylalanine) to treat Parkinson's disease (PD). PD patients exhibit lower incidence of most cancers including pancreatic cancer, but with the notable exception of melanoma. The decreased cancer incidence is not due to l-DOPA; however, the relevance of Carbidopa to this phenomenon has not been investigated. Here, we tested the hypothesis that Carbidopa, independent of l-DOPA, might elicit an anticancer effect. Carbidopa inhibited pancreatic cancer cell proliferation both in vitro and in vivo. Based on structural similarity with phenylhydrazine, an inhibitor of indoleamine-2,3-dioxygenase-1 (IDO1), we predicted that Carbidopa might also inhibit IDO1, thus providing a molecular basis for its anticancer effect. The inhibitory effect was confirmed using human recombinant IDO1. To demonstrate the inhibition in intact cells, AhR (aryl hydrocarbon receptor) activity was monitored as readout for IDO1-mediated generation of the endogenous AhR agonist kynurenine in pancreatic and liver cancer cells. Surprisingly, Carbidopa did not inhibit but instead potentiated AhR signaling, evident from increased CYP1A1 (cytochrome P450 family 1 subfamily A member 1), CYP1A2, and CYP1B1 expression. In pancreatic and liver cancer cells, Carbidopa promoted AhR nuclear localization. AhR antagonists blocked Carbidopa-dependent activation of AhR signaling. The inhibitory effect on pancreatic cancer cells in vitro and in vivo and the activation of AhR occurred at therapeutic concentrations of Carbidopa. Chromatin immunoprecipitation assay further confirmed that Carbidopa promoted AhR binding to its target gene CYP1A1 leading to its induction. We conclude that Carbidopa is an AhR agonist and suppresses pancreatic cancer. Hence, Carbidopa could potentially be re-purposed to treat pancreatic cancer and possibly other cancers as well.


2020 ◽  
Vol 22 (3) ◽  
pp. 529-533
Author(s):  
Sara Sadat Khatami ◽  
Fatemeh Tavakoli ◽  
Hossein Bagheri ◽  
Reza Salarinia ◽  
Amirreza Hesari ◽  
...  

2021 ◽  
Vol 79 ◽  
pp. 109885
Author(s):  
Gurjinder Singh ◽  
Md Mehedi Hossain ◽  
Aadil Qadir Bhat ◽  
Mir Owais Ayaz ◽  
Nasima Bano ◽  
...  

2012 ◽  
Vol 50 (01) ◽  
Author(s):  
A Henrici ◽  
R Montalbano ◽  
K Quint ◽  
M Ocker ◽  
P Di Fazio

Author(s):  
Lili Yao ◽  
Zhen-hua Sui ◽  
Yan-Kun Liu ◽  
Hong Xie ◽  
Hui-jie Gao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document