human liver cancer
Recently Published Documents


TOTAL DOCUMENTS

562
(FIVE YEARS 152)

H-INDEX

48
(FIVE YEARS 7)

2022 ◽  
pp. 112703
Author(s):  
Hua Zhang ◽  
Renwen Zhang ◽  
Xujia Zeng ◽  
Xiao Wang ◽  
Desheng Wang ◽  
...  

2021 ◽  
Vol 8 (4) ◽  
pp. 309-318
Author(s):  
Mengistu Jemberu Dagnaw ◽  
Mahesh Gopal

Background: The aim of this research was to develop a fluorogenic sensor for Al3+ions, which have been identified as a possible food and drinking water pollutant by the WHO and considered to be harmful to human health. Methods: The sensing mechanism was based on excited-state intramolecular proton transfer, with the intramolecular rotation restriction occurring after binding with the analyte. The probe attaches Al3+selectively and emits strong emission in 4:1 H2 O/MeOH (v/v) solution while irradiated at 400 nm in the presence of a wide number of cations, acting as a "turn-on" fluorescence chemosensor. The range of detection for Al3+is 3.3 nM (3 method), which is more than 200 times more responsive than the WHO suggested limit of 7.4 mM (3σ method). Mass spectra, job plot, and Benesi-Hildebrand plot were used to determine the formation of the 1:1 metal-to-ligand complex. Results: Aluminum (Al) ion content in effluent obtained from the pharmaceutical sector is 0.381 mM, which is a trace amount. A separate in vitro experiment indicates that the probe can precisely perceive Al3+ions in a cell line. The sensor-based method is developed to detect 3.3 nM of Al3+ions, which is significantly less than the WHO max. Conclusion: The probe to detect Al3+ions in live cells. HL becomes a flexible sensor for recognizing intracellular Al3+in human liver cancer cell line Hep G2 and human lung fibroblast cell lines by fluorescence cell imaging procedures, and the probe’s non-toxicity has been proven by MTT tests up to 100M.


2021 ◽  
Vol 22 (23) ◽  
pp. 13170
Author(s):  
Chen Chen ◽  
Yu-Shi Wang ◽  
En-Ting Zhang ◽  
Gang-Ao Li ◽  
Wen-Yuan Liu ◽  
...  

(20S) ginsenoside Rh2 (G-Rh2), a major bioactive metabolite of ginseng, effectively inhibits the survival and proliferation of human liver cancer cells. However, its molecular targets and working mechanism remain largely unknown. Excitingly, we screened out heat shock protein 90 alpha (HSP90A), a key regulatory protein associated with liver cancer, as a potential target of (20S) G-Rh2 by phage display analysis and mass spectrometry. The molecular docking and thermal shift analyses demonstrated that (20S) G-Rh2 directly bound to HSP90A, and this binding was confirmed to inhibit the interaction between HSP90A and its co-chaperone, cell division cycle control protein 37 (Cdc37). It is well-known that the HSP90A-Cdc37 system aids in the folding and maturation of cyclin-dependent kinases (CDKs). As expected, CDK4 and CDK6, the two G0-G1 phase promoting kinases as well as CDK2, a key G1-S phase transition promoting kinase, were significantly downregulated with (20S) G-Rh2 treatment, and these downregulations were mediated by the proteasome pathway. In the same condition, the cell cycle was arrested at the G0-G1 phase and cell growth was inhibited significantly by (20S) G-Rh2 treatment. Taken together, this study for the first time reveals that (20S) G-Rh2 exerts its anti-tumor effect by targeting HSP90A and consequently disturbing the HSP90A-Cdc37 chaperone system. HSP90A is frequently overexpressed in human hepatoma cells and the higher expression is closely correlated to the poor prognosis of liver cancer patients. Thus, (20S) G-Rh2 might become a promising alternative drug for liver cancer therapy.


Cancers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 5680
Author(s):  
Roland Sonntag ◽  
Christian Penners ◽  
Marlene Kohlhepp ◽  
Ute Haas ◽  
Daniela Lambertz ◽  
...  

Cyclin E1 (CCNE1) is a regulatory subunit of Cyclin-dependent kinase 2 (CDK2) and is thought to control the transition of quiescent cells into cell cycle progression. Recently, we identified CCNE1 and CDK2 as key factors for the initiation of hepatocellular carcinoma (HCC). In the present study, we dissected the contributions of CCNE1 and CDK2 for HCC progression in mice and patients. Therefore, we generated genetically modified mice allowing inducible deletion of Ccne1 or Cdk2. After initiation of HCC, using the hepatocarcinogen diethylnitrosamine (DEN), we deleted Ccne1 or Cdk2 and subsequently analysed HCC progression. The relevance of CCNE1 or CDK2 for human HCC progression was investigated by in silico database analysis. Interventional deletion of Ccne1, but not of Cdk2, substantially reduced the HCC burden in mice. Ccne1-deficient HCCs were characterised by attenuated proliferation, impaired DNA damage response and downregulation of markers for stemness and microinvasion. Additionally, the tumour microenvironment of Ccne1-deficient mice showed a reduction in immune mediators, myeloid cells and cancer-associated fibroblasts. In sharp contrast, Cdk2 was dispensable for HCC progression in mice. In agreement with our mouse data, CCNE1 was overexpressed in HCC patients independent of risk factors, and associated with reduced disease-free survival, a common signature for enhanced chromosomal instability, proliferation, dedifferentiation and invasion. However, CDK2 lacked diagnostic or prognostic value in HCC patients. In summary, CCNE1 drives HCC progression in a CDK2-independent manner in mice and man. Therefore, interventional inactivation of CCNE1 represents a promising strategy the treatment of liver cancer.


2021 ◽  
Vol 22 (22) ◽  
pp. 12187
Author(s):  
Kaat Leroy ◽  
Cícero Júlio Silva Costa ◽  
Alanah Pieters ◽  
Bruna dos Santos Rodrigues ◽  
Raf Van Campenhout ◽  
...  

Liver cancer cell lines are frequently used in vitro tools to test candidate anti-cancer agents as well as to elucidate mechanisms of liver carcinogenesis. Among such mechanisms is cellular communication mediated by connexin-based gap junctions. The present study investigated changes in connexin expression and gap junction functionality in liver cancer in vitro. For this purpose, seven human liver cancer cell lines, as well as primary human hepatocytes, were subjected to connexin and gap junction analysis at the transcriptional, translational and activity level. Real-time quantitative reverse transcription polymerase chain reaction analysis showed enhanced expression of connexin43 in the majority of liver cancer cell lines at the expense of connexin32 and connexin26. Some of these changes were paralleled at the protein level, as evidenced by immunoblot analysis and in situ immunocytochemistry. Gap junctional intercellular communication, assessed by the scrape loading/dye transfer assay, was generally low in all liver cancer cell lines. Collectively, these results provide a full scenario of modifications in hepatocyte connexin production and gap junction activity in cultured liver cancer cell lines. The findings may be valuable for the selection of neoplastic hepatocytes for future mechanistic investigation and testing of anti-cancer drugs that target connexins and their channels.


2021 ◽  
Vol 22 (20) ◽  
pp. 11219
Author(s):  
Nadia Z. Shaban ◽  
Salah A. Yehia ◽  
Doaa Awad ◽  
Shaban Y. Shaban ◽  
Samar R. Saleh

Titanium (IV)–dithiophenolate complex chitosan nanocomposites (DBT–CSNPs) are featured by their antibacterial activities, cytotoxicity, and capacity to bind with DNA helixes. In this study, their therapeutic effects against rat liver damage induced by carbon tetrachloride (CCl4) and their anti-proliferative activity against human liver cancer (HepG2) cell lines were determined. Results of treatment were compared with cisplatin treatment. Markers of apoptosis, oxidative stress, liver functions, and liver histopathology were determined. The results showed that DBT–CSNPs and DBT treatments abolished liver damage induced by CCl4 and improved liver architecture and functions. DNA fragmentation, Bax, and caspase-8 were reduced, but Bcl-2 and the Bcl-2/Bax ratios were increased. However, there was a non-significant change in the oxidative stress markers. DBT–CSNPs and DBT inhibited the proliferation of HepG2 cells by arresting cells in the G2/M phase and inducing cell death. DBT–CSNPs were more efficient than DBT. Low doses of DBT and DBT–CSNPs applied to healthy rats for 14 days had no adverse effect. DBT and DBT–CSNP treatment gave preferable results than the treatment with cisplatin. In conclusion, DBT–CSNPs and DBT have anti-apoptotic activities against liver injuries and have anti-neoplastic impacts. DBT–CSNPs are more efficient. Both compounds can be used in pharmacological fields.


Author(s):  
Jie Chen ◽  
Zhigang Jiao ◽  
Jianwen Mo ◽  
Defa Huang ◽  
Zhengzhe Li ◽  
...  

AbstractA potential use of small extracellular vesicles (sEVs) for diagnostic and therapeutic purposes has recently generated a great interest. sEVs, when purified directly from various tissues with proper procedures, can reflect the physiological and pathological state of the organism. However, the quality of sEV is affected by many factors during isolation, including separation of sEV from cell and tissues debris, the use of enzymes for tissue digestion, and the storage state of tissues. In the present study, we established an assay for the isolation and purification of liver cancer tissues-derived sEVs (tdsEVs) and cultured explants-derived sEVs (cedsEVs) by comparing the quality of sEVs derived from different concentration of digestion enzyme and incubation time. The nano-flow cytometry (NanoFCM) showed that the isolated tdsEVs by our method are purer than those obtained from differential ultracentrifugation. Our study thus establishes a simple and effective approach for isolation of high-quality sEVs that can be used for analysis of their constituents. Graphical abstract


Neoplasma ◽  
2021 ◽  
Author(s):  
Xuan Zheng ◽  
Jing-Wu Li ◽  
Yan-Kun Liu ◽  
Yi-Fu Ma ◽  
Jian-Hui Gan ◽  
...  

Hepatology ◽  
2021 ◽  
Author(s):  
Komal Ramani ◽  
Aaron E. Robinson ◽  
Joshua Berlind ◽  
Wei Fan ◽  
Aushinie Abeynayake ◽  
...  

Author(s):  
Christoph Grander ◽  
Felix Grabherr ◽  
Barbara Enrich ◽  
Moritz Meyer ◽  
Lisa Mayr ◽  
...  

Abstract Objective Laparoscopic adjustable gastric banding (LAGB) was found to be effective in reducing body weight and improving insulin resistance in patients with obesity and non-alcoholic fatty liver disease (NAFLD). The adipokine/myokine meteorin-like (METNRL) is an important regulator of whole-body energy expenditure. Krüppel-like factor 3 (KLF3), a regulator of METRNL expression in eosinophils, inhibits the beiging of adipose tissue in mice and therefore regulates adipose tissue development. Methods Thirty-three obese patients undergoing LAGB were included in the study. The hepatic and adipose tissue expression of METNRL and KLF3 was determined before (t0) and 6 months after (t6) LABG. The human liver cancer cell line (HepG2) was stimulated with cytokines and fatty acids and METNRL and KLF3 expressions were analyzed. Results LAGB-associated weight loss was correlated with decreased hepatic METNRL expression. The expression of METNRL and KLF3 in hepatic-and adipose tissues correlated before and after LAGB. Individuals with augmented LAGB-induced weight loss (>20 kg) showed lower hepatic METNRL and KLF3 expression before and after LAGB than patients with <20 kg weight loss. METNRL and KLF3 levels were higher in patients with higher NAFLD activity scores. HepG2 stimulation with interleukin-1β, tumor necrosis factor-α, palmitic acid but not interleukin-6, oleic acid, or lipopolysaccharide, induced the expression of one or both investigated adipokines. Conclusions The novel description of METRNL and KLF3 as hepatokines could pave the way to target their production and/or signaling in obesity, NAFLD, and related disorders. Both proteins may act as possible biomarkers to estimate weight loss after bariatric surgery.


Sign in / Sign up

Export Citation Format

Share Document