liver cancer cells
Recently Published Documents


TOTAL DOCUMENTS

913
(FIVE YEARS 324)

H-INDEX

47
(FIVE YEARS 10)

2022 ◽  
Vol 12 (2) ◽  
pp. 323-328
Author(s):  
Hao Cai ◽  
Jian Du ◽  
Cheng Luo

We aimed to explore whether microRNA (miRNA)-136-5p modulates P53 expression, and affects the efficacy of docetaxel treatment for liver cancer. miRNA array screened the differentially expressed miRNAs in biopsy tissues of liver cancer patients, and the expression of miR-136-5p and P53 in tissues and cells by RT-PCR. Following docetaxel treatment, through increased- and decreased-function method, we detected the impact of the miRNA on cell progression, as well as the sensitivity of docetaxel through MTT assay and colony formation experiment. The correlation between miR-136-5p and P53 was evaluated. The expression of miR-136-5p in liver cancer cells is up-regulated, which is consistent with the results of bioinformatics analysis. Further, miR-136-5p overexpression promoted cell proliferation and migration, and sensitized liver cancer cells to docetaxel. Interestingly, P53 was indicated to bind to miR-136-5p, and P53 participated in the up-regulation of MMP10 induced by miR-136-5p. miR-136-5p enhances the sensitivity to docetaxel in liver cancer and thus could be a biomarker for the treatment against liver cancer.


2022 ◽  
Vol 20 (2) ◽  
pp. 359-364
Author(s):  
Zhen You ◽  
Bei Li ◽  
Jun Gao ◽  
Jiong Lu ◽  
Ruihua Xu

Purpose: To investigate the effect of azaindole on proliferation of liver cancer cells, as well as the underlying mechanism. Methods: Colony forming and 3-(4,5-dimethylthiazole-2-yl)-2,5-biphenyl tetrazolium bromide (MTT) assays were used to determine the effect of azaindole on cell proliferation. A tumor model was established through subcutaneous administration of HEPG2 cells to rats. Thereafter, in vivo tumor development was measured using Vernier caliper. Results: The proliferation potential of HEPG2 and SNU-398 cells was markedly and dose-dependently suppressed by treatment with azaindole at doses of 2, 4, 8, 16 and 20 μM (p < 0.05). The expression levels of Ki67 and PCNA levels were significantly down-regulated in HEPG2 and SNU-398 cells on treatment with 20 μM azaindole. Moreover, azaindole significantly suppressed mRNA and protein expressions of KIFC1 in HEPG2 and SNU-398 cells (p < 0.05). Tumor volume in azaindole-treated rats on day 21 was greatly reduced, while KIFC1 expression in azaindole-treated rat tumor tissue was significantly down-regulated, when compared to the model group (p < 0.05). Conclusion: Azaindole targets proliferation of liver cancer cells in vitro and inhibits tumor growth in vivo through a mechanism involving down-regulation of KIFCI expression. Thus, azaindole is a potential therapeutic candidate for liver cancer.


2022 ◽  
Vol 11 ◽  
Author(s):  
Jianning Song ◽  
Hongzhong Zhou ◽  
Dayong Gu ◽  
Yong Xu

Hepatocellular carcinoma (HCC) is the most common primary malignant tumor of the liver. Although progress has been made in diagnosis and treatment, morbidity and mortality continue to rise. Chronic liver disease and liver cirrhosis are still the most important risk factors for liver cancer. Although there are many treatments, it can only be cured by orthotopic liver transplantation (OLT) or surgical resection. And the worse the degree of differentiation, the worse the prognosis of patients with liver cancer. Then it can be considered that restoring a better state of differentiation may improve the prognosis. The differentiation treatment of liver cancer is to reverse the dedifferentiation process of hepatocytes to liver cancer cells by means of drugs, improve the differentiation state of the tumor, and restore the normal liver characteristics, so as to improve the prognosis. Understanding the mechanism of dedifferentiation of liver cancer can provide ideas for drug design. Liver enrichment of transcription factors, imbalance of signal pathway and changes of tumor microenvironment can promote the occurrence and development of liver cancer, and restoring its normal level can inhibit the malignant behavior of tumor. At present, some drugs have been proved to be effective, but more clinical data are needed to support the effectiveness and reliability of drugs. The differentiation treatment of liver cancer is expected to become an important part of the treatment of liver cancer in the future.


2021 ◽  
Author(s):  
Tingting Zhang ◽  
Hongmei Guo ◽  
Letian Wang ◽  
Mengyao Wang ◽  
Hanming Gu

Liver cancer is a leading source of cancer-related mortality in the world. A number of studies have shown the correlation of metformin treatment with a decrease in cancer risk. However, the relevant molecules and mechanisms are not clear during the treatment. In this study, our aim is to identify the significant molecules and signaling pathways in the treatment of metformin in liver cancer cells by analyzing the RNA sequence. The GSE190076 dataset was created by performing the Illumina NovaSeq 6000 (Homo sapiens). The KEGG and GO analyses indicated that DNA synthesis and cell cycle are the main processes during the treatment of metformin. Moreover, we determined numerous genes including RRM2, CDC6, CDC45, UHRF1, ASF1B, ZWINT, PCNA, ASPM, MYC, and TK1 by using the PPI network. Therefore, our study may guide the clinical work on the treatment of liver cancer by using metformin.


2021 ◽  
Author(s):  
Yiquan Li ◽  
Chao Shang ◽  
Zirui Liu ◽  
Jicheng Han ◽  
Wenjie Li ◽  
...  

Abstract Background: Apoptin, as a tumor-specific pro-apoptotic protein, apoptin plays an important role in the field of anti-tumor, but its autophagy activation mechanism and the interaction between autophagy and apoptosis have not been accurately elucidated. Here, we studied the mechanism of apoptosis and autophagy induced by apoptin and the interaction between autophagy and apoptosis. Methods: Through crystal violet staining and CCK-8 assay, we analyzed the effect of apoptin in inhibiting liver cancer in vitro, and also analyzed the effect of inhibiting liver cancer in vivo by establishing a nude mouse tumor model. Flow cytometry and fluorescence staining were used to analyze the main types of apoptosis and autophagy induced by apoptin. Subsequently, the relationship between apoptosis and autophagy induced by apoptin was analyzed. Then, flow cytometry was used to analyze the effect of ROS on apoptosis and autophagy mediated by apoptin. Then, the affect of ROS on apoptosis and autophagy mediated by apoptin was analyzed. Finally, the key genes leading to autophagy were analyzed by silencing different genes.Results: The results showed that apoptin can significantly increase the apoptosis and autophagy of liver cancer cells, and apoptin can cause mitophagy through the increase of NIX protein. Apoptin can also significantly reduce the level of cellular ROS, which is related to the autophagy and apoptosis of liver cancer cells caused by apoptin. The change of ROS may be a key factor causing apoptosis and autophagy. Conclusion: The above results indicate that the increase of ROS level after apoptin treatment of liver cancer cells leads to the loss of mitochondrial transmembrane potential, which leads to endogenous apoptosis and mitophagy while recruiting NIX. Therefore, ROS may be a key factor connecting endogenous apoptosis and mitophagy induced by apoptin in liver cancer cells.


2021 ◽  
Author(s):  
Xiaofei Tang ◽  
Yang Xiang

Abstract Purpose: This study aims to explore the expression of circDUSP16 in liver cancer and its effect on the proliferation and apoptosis of liver cancer cells. Methods: Real-timePCR was used to measure the expression of circDUSP16, miR-136-5p, and YAP1 in HCC tissues and cells. MTT, colony analysis, and apoptosis analysis were performed to determine the progress of HCC cells. The relationship between circDUSP16, miR-136-5p, and YAP1 was verified by using the luciferase gene experiment. Results: The expression level of circDUSP16 in HCC tissue samples was significantly increased and can be used as an independent prognostic factor for the survival of HCC patients. Inhibition of circDUSP16 can inhibit HCC cell viability, colony formation, and invasion potential. Furthermore, inhibition of circDUSP16 can regulate the expression of YAP1 in the Hippo/YAP signaling pathway in HCC by targeting miR-136-5p, thereby affecting cell proliferation and apoptosis, and participating in the progression of HCC disease. Conclusion: The ectopic expression of circDUSP16 can regulate the expression of YAP1 by competitively binding to miR-136-5p, therefore participating in the progression of HCC, which can provide a new therapeutic target for the treatment of HCC.


2021 ◽  
Author(s):  
Lirong Zhao ◽  
Wei Zhang ◽  
Qiong Wu ◽  
Changhui Fu ◽  
Xiangling Ren ◽  
...  

Abstract Backgrounds: Microwave sensitization nanoplatform, integrating multiple functional units for improving tumor selectivity, is of great significance for clinical tumor microwave therapy. Lanthanide europium metal organic framework materials (EuMOF) are expected to be a theranostic nanoplatform owing to its specific luminescent properties and microwave sensitization properties. However, it is difficult to be applied to complex biological systems for EuMOF due to its rapid degradation induced by the solvent molecular and ionic environment. In this work, a luminescent EuMOF nanocomposite (EuMOF@ZIF/AP-PEG, named EZAP) was designed, which brought the multifunctional characteristics of microwave sensitization, fluorescence imaging and drug loading. Results Lamellar EuMOF was synthesized by a hydrothermal method. Through the charge adsorption mechanism, the zeolite imidazole framework (ZIF) structure was densely assembled on the surface of EuMOF to realize the protection. Then, through in-situ apatinib drug loading and PEG modification, EZAP nanocomposite was finally obtained. Apatinib (AP) was a kind of chemotherapy drug approved by Food and Drug Administration for clinical use. PEG modification increased long-term circulation of EZAP nanocomposite. The physical and chemical structure and properties of EuMOF@ZIF (EZ) were systematically represented, indicating the successful synthesis of the nanocomposite. The toxic and side effects were negligible at a safe dose. The growth of human liver cancer cells and murine liver cancer cells in vitro was significantly inhibited, and the combined microwave-thermal therapy and chemotherapy in vivo achieved high anti-cancer efficacy. Moreover, EZAP nanocomposite possessed bright red fluorescence, which had good ability for tumor imaging in tumor-bearing mice in vivo. Conclusion Therefore, EZAP nanocomposite showed high microwave sensitization, excellent fluorescence properties and good drug loading capacity, establishing a promising theranostic nanoplatform for tumor therapy and fluorescence imaging. This work proposes a unique strategy to design for the first time a multifunctional nanoplatform with lanthanide metal organic frameworks for tumor treatment and diagnosis in the biological application.


2021 ◽  
Vol 22 (23) ◽  
pp. 13170
Author(s):  
Chen Chen ◽  
Yu-Shi Wang ◽  
En-Ting Zhang ◽  
Gang-Ao Li ◽  
Wen-Yuan Liu ◽  
...  

(20S) ginsenoside Rh2 (G-Rh2), a major bioactive metabolite of ginseng, effectively inhibits the survival and proliferation of human liver cancer cells. However, its molecular targets and working mechanism remain largely unknown. Excitingly, we screened out heat shock protein 90 alpha (HSP90A), a key regulatory protein associated with liver cancer, as a potential target of (20S) G-Rh2 by phage display analysis and mass spectrometry. The molecular docking and thermal shift analyses demonstrated that (20S) G-Rh2 directly bound to HSP90A, and this binding was confirmed to inhibit the interaction between HSP90A and its co-chaperone, cell division cycle control protein 37 (Cdc37). It is well-known that the HSP90A-Cdc37 system aids in the folding and maturation of cyclin-dependent kinases (CDKs). As expected, CDK4 and CDK6, the two G0-G1 phase promoting kinases as well as CDK2, a key G1-S phase transition promoting kinase, were significantly downregulated with (20S) G-Rh2 treatment, and these downregulations were mediated by the proteasome pathway. In the same condition, the cell cycle was arrested at the G0-G1 phase and cell growth was inhibited significantly by (20S) G-Rh2 treatment. Taken together, this study for the first time reveals that (20S) G-Rh2 exerts its anti-tumor effect by targeting HSP90A and consequently disturbing the HSP90A-Cdc37 chaperone system. HSP90A is frequently overexpressed in human hepatoma cells and the higher expression is closely correlated to the poor prognosis of liver cancer patients. Thus, (20S) G-Rh2 might become a promising alternative drug for liver cancer therapy.


Sign in / Sign up

Export Citation Format

Share Document