scholarly journals Рассеяние электронов и дырок глубокими примесями в полупроводниковых гетероструктурах с квантовыми ямами

2020 ◽  
Vol 62 (10) ◽  
pp. 1601
Author(s):  
Ю.А. Померанцев

Electron and hole scattering by deep impurities in gallium arsenide heterostructures with two quantum wells under arbitrary doping profile was considered within the strongly localized potential approximation. The de-pendence of scattering rate on the carrier energy was shown to reproduce the step-like form of the density of states for size quantization subbands of the heterostructure accounting for the contribution of the overlap integral of the carrier wave functions. For hole subbands of negative effective mass the scattering rates at the subband edges have singularities common for one-dimensional systems.

2010 ◽  
Vol 7 (7-8) ◽  
pp. 2255-2258 ◽  
Author(s):  
D. Watson-Parris ◽  
M. J. Godfrey ◽  
R. A. Oliver ◽  
P. Dawson ◽  
M. J. Galtrey ◽  
...  

Author(s):  
Frank S. Levin

Chapter 7 illustrates the results obtained by applying the Schrödinger equation to a simple pedagogical quantum system, the particle in a one-dimensional box. The wave functions are seen to be sine waves; their wavelengths are evaluated and used to calculate the quantized energies via the de Broglie relation. An energy-level diagram of some of the energies is constructed; on it are illustrations of the corresponding wave functions and probability distributions. The wave functions are seen to be either symmetric or antisymmetric about the midpoint of the line representing the box, thereby providing a lead-in to the later exploration of certain symmetry properties of multi-electron atoms. It is next pointed out that the Schrödinger equation for this system is identical to Newton’s equation describing the vibrations of a stretched musical string. The different meaning of the two solutions is discussed, as is the concept and structure of linear superpositions of them.


2020 ◽  
Vol 15 ◽  
pp. 57
Author(s):  
G. S. Anagnostatos

The significant features of exchange symmetry are displayed by simple systems such as two identical, spinless fermions in a one-dimensional well with infinite walls. The conclusion is that the maxima of probability of the antisymmetrized wave function of these two fermions lie at the same positions as if a repulsive force (of unknown nature) was applied between these two fermions. This conclusion is combined with the solution of a mathematical problem dealing with the equilibrium of identical repulsive particles (of one or two kinds) on one or more spheres like neutrons and protons on nuclear shells. Such particles are at equilibrium only for specific numbers of particles and, in addition, if these particles lie on the vertices of regular polyhedra or their derivative polyhedra. Finally, this result leads to a pictorial representation of the structure of all closed shell nuclei. This representation could be used as a laboratory for determining nuclear properties and corresponding wave functions.


Author(s):  
N. T. Bagraev ◽  
L. E. Klyachkin ◽  
A. M. Malyarenko ◽  
V. S. Khromov

The results of studying the quantum conductance staircase of holes in one−dimensional channels obtained by the split−gate method inside silicon nanosandwiches that are the ultra−narrow quantum well confined by the delta barriers heavily doped with boron on the n−type Si (100) surface are reported. Since the silicon quantum wells studied are ultra−narrow (~2 nm) and confined by the delta barriers that consist of the negative−U dipole boron centers, the quantized conductance of one−dimensional channels is observed at relatively high temperatures (T > 77 K). Further, the current−voltage characteristic of the quantum conductance staircase is studied in relation to the kinetic energy of holes and their sheet density in the quantum wells. The results show that the quantum conductance staircase of holes in p−Si quantum wires is caused by independent contributions of the one−dimensional (1D) subbands of the heavy and light holes; these contributions manifest themselves in the study of square−section quantum wires in the doubling of the quantum−step height (G0 = 4e2/h), except for the first step (G0 = 2e2/h) due to the absence of degeneracy of the lower 1D subband. An analysis of the heights of the first and second quantum steps indicates that there is a spontaneous spin polarization of the heavy and light holes, which emphasizes the very important role of exchange interaction in the processes of 1D transport of individual charge carriers. In addition, the field−related inhibition of the quantum conductance staircase is demonstrated in the situation when the energy of the field−induced heating of the carriers become comparable to the energy gap between the 1D subbands. The use of the split−gate method made it possible to detect the effect of a drastic increase in the height of the quantum conductance steps when the kinetic energy of holes is increased; this effect is most profound for quantum wires of finite length, which are not described under conditions of a quantum point contact. In the concluding section of this paper we present the findings for the quantum conductance staircase of holes that is caused by the edge channels in the silicon nanosandwiches prepared within frameworks of the Hall. This longitudinal quantum conductance staircase, Gxx, is revealed by the voltage applied to the Hall contacts, Vxy, to a maximum of 4e2/h. In addition to the standard plateau, 2e2/h, the variations of the Vxy voltage appear to exhibit the fractional forms of the quantum conductance staircase with the plateaus and steps that bring into correlation respectively with the odd and even fractional values.


2015 ◽  
Vol 28 (1) ◽  
pp. 103-111 ◽  
Author(s):  
Volodymyr Grimalsky ◽  
Outmane Oubram ◽  
Svetlana Koshevaya ◽  
Christian Castrejon-Martinez

The application of the Thomas-Fermi method to calculate the electron spectrum in quantum wells formed by highly doped n-Si quantum wires is presented under finite temperatures where the many-body effects, like exchange, are taken into account. The electron potential energy is calculated initially from a single equation. Then the electron energy sub-levels and the wave functions within the potential well are simulated from the Schr?dinger equation. For axially symmetric wave functions the shooting method has been used. Two methods have been applied to solve the Schr?dinger equation in the case of the anisotropic effective electron mass, the variation method and the iteration procedure for the eigenvectors of the Hamiltonian matrix.


Sign in / Sign up

Export Citation Format

Share Document