scholarly journals Самоиндуцированная прозрачность в монослое черного фосфора

Author(s):  
Г.Т. Адамашвили

AbstractA theory of the optical soliton of self-induced transparency (SIT) in a black phosphorus monolayer (phosphorene) has been developed. Explicit analytical expressions describing the surface soliton in phosphorene and other anisotropic two-dimensional materials are obtained. It is shown that the anisotropic phosphorene conductivity leads to exponential damping of the amplitude of the soliton of the surface wave, which strongly depends on the direction of pulse propagation. The maximum damping of the SIT soliton amplitude takes place in the “armchair” direction of phosphorene.

View ◽  
2020 ◽  
pp. 20200043
Author(s):  
Jie Ding ◽  
Guangbo Qu ◽  
Paul K. Chu ◽  
Xue‐Feng Yu

Nanoscale ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 5599-5606 ◽  
Author(s):  
P. He ◽  
J. R. Brent ◽  
H. Ding ◽  
J. Yang ◽  
D. J. Lewis ◽  
...  

We present the results from an all inkjet printed 2D-black phosphorus humidity sensor displaying very high sensitivity.


View ◽  
2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Jie Ding ◽  
Guangbo Qu ◽  
Paul K. Chu ◽  
Xue‐Feng Yu

RSC Advances ◽  
2016 ◽  
Vol 6 (24) ◽  
pp. 20027-20033 ◽  
Author(s):  
Fang Zhang ◽  
Zhixin Wu ◽  
Zhengping Wang ◽  
Duanliang Wang ◽  
Shenglai Wang ◽  
...  

Black phosphorous (BP), the most thermodynamically stable allotrope of phosphorus, fills up the lacuna left by other two-dimensional materials with a band gap from 0.3 to 2 eV.


2018 ◽  
Author(s):  
Penny Perlepe ◽  
Rodolphe Clérac ◽  
Itziar Oyarzabal ◽  
Corine Mathonière

2018 ◽  
pp. 14-18
Author(s):  
V. V. Artyushenko ◽  
A. V. Nikulin

To simulate echoes from the earth’s surface in the low flight mode, it is necessary to reproduce reliably the delayed reflected sounding signal of the radar in real time. For this, it is necessary to be able to calculate accurately and quickly the dependence of the distance to the object being measured from the angular position of the line of sight of the radar station. Obviously, the simplest expressions for calculating the range can be obtained for a segment or a plane. In the text of the article, analytical expressions for the calculation of range for two-dimensional and three-dimensional cases are obtained. Methods of statistical physics, vector algebra, and the theory of the radar of extended objects were used. Since the calculation of the dependence of the range of the object to the target from the angular position of the line of sight is carried out on the analytical expressions found in the paper, the result obtained is accurate, and due to the relative simplicity of the expressions obtained, the calculation does not require much time.


Nanophotonics ◽  
2020 ◽  
Vol 9 (16) ◽  
pp. 4719-4728
Author(s):  
Tao Deng ◽  
Shasha Li ◽  
Yuning Li ◽  
Yang Zhang ◽  
Jingye Sun ◽  
...  

AbstractThe molybdenum disulfide (MoS2)-based photodetectors are facing two challenges: the insensitivity to polarized light and the low photoresponsivity. Herein, three-dimensional (3D) field-effect transistors (FETs) based on monolayer MoS2 were fabricated by applying a self–rolled-up technique. The unique microtubular structure makes 3D MoS2 FETs become polarization sensitive. Moreover, the microtubular structure not only offers a natural resonant microcavity to enhance the optical field inside but also increases the light-MoS2 interaction area, resulting in a higher photoresponsivity. Photoresponsivities as high as 23.8 and 2.9 A/W at 395 and 660 nm, respectively, and a comparable polarization ratio of 1.64 were obtained. The fabrication technique of the 3D MoS2 FET could be transferred to other two-dimensional materials, which is very promising for high-performance polarization-sensitive optical and optoelectronic applications.


Sign in / Sign up

Export Citation Format

Share Document