scholarly journals A European option general first-order error formula

2013 ◽  
Vol 54 ◽  
pp. 248
Author(s):  
Guillaume Leduc
2013 ◽  
Vol 54 (4) ◽  
pp. 248-272 ◽  
Author(s):  
GUILLAUME LEDUC

AbstractWe study the value of European security derivatives in the Black–Scholes model when the underlying asset $\xi $ is approximated by random walks ${\xi }^{(n)} $. We obtain an explicit error formula, up to a term of order $ \mathcal{O} ({n}^{- 3/ 2} )$, which is valid for general approximating schemes and general payoff functions. We show how this error formula can be used to find random walks ${\xi }^{(n)} $ for which option values converge at a speed of $ \mathcal{O} ({n}^{- 3/ 2} )$.


2003 ◽  
Vol 3 (1) ◽  
pp. 189-201 ◽  
Author(s):  
Ilya D. Mishev

AbstractA new mixed finite volume method for elliptic equations with tensor coefficients on rectangular meshes (2 and 3-D) is presented. The implementation of the discretization as a finite volume method for the scalar variable (“pressure”) is derived. The scheme is well suited for heterogeneous and anisotropic media because of the generalized harmonic averaging. It is shown that the method is stable and well posed. First-order error estimates are derived. The theoretical results are confirmed by the presented numerical experiments.


1978 ◽  
Vol 56 (10) ◽  
pp. 1358-1364 ◽  
Author(s):  
J. W. Darewych ◽  
R. Pooran

We derive bounds to the absolute value of the error that is made in variational estimates of scattering phase shifts. These bounds, like the variational estimates, are second order in 'small' quantities and are, in this respect, an improvement on similar but first-order error bounds derived previously by Bardsley, Gerjuoy, and Sukumar. The s-wave scattering by a square well potential, in the Born approximation, and by an exponential potential, using a many parameter trial function, are used to illustrate the results.


Sign in / Sign up

Export Citation Format

Share Document