scholarly journals Skin Lesion Classification With Deep Convolutional Neural Network: Process Development and Validation

10.2196/18438 ◽  
2020 ◽  
Vol 3 (1) ◽  
pp. e18438
Author(s):  
Arnab Ray ◽  
Aman Gupta ◽  
Amutha Al

Background Skin cancer is the most common cancer and is often ignored by people at an early stage. There are 5.4 million new cases of skin cancer worldwide every year. Deaths due to skin cancer could be prevented by early detection of the mole. Objective We propose a skin lesion classification system that has the ability to detect such moles at an early stage and is able to easily differentiate between a cancerous and noncancerous mole. Using this system, we would be able to save time and resources for both patients and practitioners. Methods We created a deep convolutional neural network using an Inceptionv3 and DenseNet-201 pretrained model. Results We found that using the concepts of fine-tuning and the ensemble learning model yielded superior results. Furthermore, fine-tuning the whole model helped models converge faster compared to fine-tuning only the top layers, giving better accuracy overall. Conclusions Based on our research, we conclude that deep learning algorithms are highly suitable for classifying skin cancer images.


2020 ◽  
Author(s):  
Arnab Ray ◽  
Aman Gupta ◽  
Amutha Al

BACKGROUND Skin cancer is the most common cancer and is often ignored by people at an early stage. There are 5.4 million new cases of skin cancer worldwide every year. Deaths due to skin cancer could be prevented by early detection of the mole. OBJECTIVE We propose a skin lesion classification system that has the ability to detect such moles at an early stage and is able to easily differentiate between a cancerous and noncancerous mole. Using this system, we would be able to save time and resources for both patients and practitioners. METHODS We created a deep convolutional neural network using an Inceptionv3 and DenseNet-201 pretrained model. RESULTS We found that using the concepts of fine-tuning and the ensemble learning model yielded superior results. Furthermore, fine-tuning the whole model helped models converge faster compared to fine-tuning only the top layers, giving better accuracy overall. CONCLUSIONS Based on our research, we conclude that deep learning algorithms are highly suitable for classifying skin cancer images.



2020 ◽  
Author(s):  
Aishwariya Dutta ◽  
Md. Kamrul Hasan ◽  
Mohiuddin Ahmad

AbstractSkin cancer, also known as melanoma, is generally diagnosed visually from the dermoscopic images, which is a tedious and time-consuming task for the dermatologist. Such a visual assessment, via the naked eye for skin cancers, is a challenging and arduous due to different artifacts such as low contrast, various noise, presence of hair, fiber, and air bubbles, etc. This article proposes a robust and automatic framework for the Skin Lesion Classification (SLC), where we have integrated image augmentation, Deep Convolutional Neural Network (DCNN), and transfer learning. The proposed framework was trained and tested on publicly available IEEE International Symposium on Biomedical Imaging (ISBI)-2017 dataset. The obtained average area under the receiver operating characteristic curve (AUC), recall, precision, and F1-score are respectively 0.87, 0.73, 0.76, and 0.74 for the SLC. Our experimental studies for lesion classification demonstrate that the proposed approach can successfully distinguish skin cancer with a high degree of accuracy, which has the capability of skin lesion identification for melanoma recognition.



2021 ◽  
pp. 1-10
Author(s):  
Gayatri Pattnaik ◽  
Vimal K. Shrivastava ◽  
K. Parvathi

Pests are major threat to economic growth of a country. Application of pesticide is the easiest way to control the pest infection. However, excessive utilization of pesticide is hazardous to environment. The recent advances in deep learning have paved the way for early detection and improved classification of pest in tomato plants which will benefit the farmers. This paper presents a comprehensive analysis of 11 state-of-the-art deep convolutional neural network (CNN) models with three configurations: transfers learning, fine-tuning and scratch learning. The training in transfer learning and fine tuning initiates from pre-trained weights whereas random weights are used in case of scratch learning. In addition, the concept of data augmentation has been explored to improve the performance. Our dataset consists of 859 tomato pest images from 10 categories. The results demonstrate that the highest classification accuracy of 94.87% has been achieved in the transfer learning approach by DenseNet201 model with data augmentation.



2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Lian Zou ◽  
Shaode Yu ◽  
Tiebao Meng ◽  
Zhicheng Zhang ◽  
Xiaokun Liang ◽  
...  

This study reviews the technique of convolutional neural network (CNN) applied in a specific field of mammographic breast cancer diagnosis (MBCD). It aims to provide several clues on how to use CNN for related tasks. MBCD is a long-standing problem, and massive computer-aided diagnosis models have been proposed. The models of CNN-based MBCD can be broadly categorized into three groups. One is to design shallow or to modify existing models to decrease the time cost as well as the number of instances for training; another is to make the best use of a pretrained CNN by transfer learning and fine-tuning; the third is to take advantage of CNN models for feature extraction, and the differentiation of malignant lesions from benign ones is fulfilled by using machine learning classifiers. This study enrolls peer-reviewed journal publications and presents technical details and pros and cons of each model. Furthermore, the findings, challenges and limitations are summarized and some clues on the future work are also given. Conclusively, CNN-based MBCD is at its early stage, and there is still a long way ahead in achieving the ultimate goal of using deep learning tools to facilitate clinical practice. This review benefits scientific researchers, industrial engineers, and those who are devoted to intelligent cancer diagnosis.



Author(s):  
Sara Hosseinzadeh Kassani ◽  
Peyman Hosseinzadeh Kassani ◽  
Michal J. Wesolowski ◽  
Kevin A. Schneider ◽  
Ralph Deters


Sign in / Sign up

Export Citation Format

Share Document