Framework for Evaluating Appropriateness of Clinical Decision Support Systems Alert in Supporting Clinical Workflow (Preprint)

2019 ◽  
Author(s):  
Maryati Yusof ◽  
Olufisayo Olakotan ◽  
Sharifa Ezat Puteh

BACKGROUND Clinical decision support systems (CDSS) generate excessive alerts that lead to alert fatigue and override. Alert overrides have resulted in patient death and medical errors. CDSS with its alert function can also disrupt clinical workflow. Therefore, inefficient clinical processes that contribute to the misfit between CDSS alert and workflows must be evaluated. Evaluation findings can serve as input to the process redesign. Redesigning clinical processes can enhance CDSS alert appropriateness and subsequently improve patient safety. OBJECTIVE The paper presents a proposed framework for evaluating CDSS appropriateness in supporting clinical workflow. The paper also discusses the preliminary results of the framework validation. METHODS A subjectivist, qualitative case study evaluation was conducted at a 620-bed public teaching hospital using semi-structured interview, observation, and document analysis methods to investigate the features and functions of alert appropriateness and workflow related issues. The current state map for medication prescription process was also modelled to identify problems pertinent to alert appropriateness. RESULTS The main findings showed that CDSS is not well designed to fit into clinical workflow due to several influencing factors including technology (system design and implementation), human (information analysis and acquisition), organization (clinical tasks, organizational policies & procedures) and process (process analysis, redesign, implementation, monitoring and improvement) impeding the use of CDSS with its alert function. CONCLUSIONS CDSS alerts should be integrated into clinical workflows due to their potentials in enhancing patient safety. Process improvement methods such as Lean can be used to enhance the appropriateness of CDSS alerts by identifying inefficient clinical processes that impede the fit of CDSS alerts with clinical workflow. The validated framework can be used to address alert and workflow related problems in any healthcare setting.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Elizabeth Ford ◽  
Natalie Edelman ◽  
Laura Somers ◽  
Duncan Shrewsbury ◽  
Marcela Lopez Levy ◽  
...  

Abstract Background Well-established electronic data capture in UK general practice means that algorithms, developed on patient data, can be used for automated clinical decision support systems (CDSSs). These can predict patient risk, help with prescribing safety, improve diagnosis and prompt clinicians to record extra data. However, there is persistent evidence of low uptake of CDSSs in the clinic. We interviewed UK General Practitioners (GPs) to understand what features of CDSSs, and the contexts of their use, facilitate or present barriers to their use. Methods We interviewed 11 practicing GPs in London and South England using a semi-structured interview schedule and discussed a hypothetical CDSS that could detect early signs of dementia. We applied thematic analysis to the anonymised interview transcripts. Results We identified three overarching themes: trust in individual CDSSs; usability of individual CDSSs; and usability of CDSSs in the broader practice context, to which nine subthemes contributed. Trust was affected by CDSS provenance, perceived threat to autonomy and clear management guidance. Usability was influenced by sensitivity to the patient context, CDSS flexibility, ease of control, and non-intrusiveness. CDSSs were more likely to be used by GPs if they did not contribute to alert proliferation and subsequent fatigue, or if GPs were provided with training in their use. Conclusions Building on these findings we make a number of recommendations for CDSS developers to consider when bringing a new CDSS into GP patient records systems. These include co-producing CDSS with GPs to improve fit within clinic workflow and wider practice systems, ensuring a high level of accuracy and a clear clinical pathway, and providing CDSS training for practice staff. These recommendations may reduce the proliferation of unhelpful alerts that can result in important decision-support being ignored.


2021 ◽  
Vol 11 (11) ◽  
pp. 5088
Author(s):  
Anna Markella Antoniadi ◽  
Yuhan Du ◽  
Yasmine Guendouz ◽  
Lan Wei ◽  
Claudia Mazo ◽  
...  

Machine Learning and Artificial Intelligence (AI) more broadly have great immediate and future potential for transforming almost all aspects of medicine. However, in many applications, even outside medicine, a lack of transparency in AI applications has become increasingly problematic. This is particularly pronounced where users need to interpret the output of AI systems. Explainable AI (XAI) provides a rationale that allows users to understand why a system has produced a given output. The output can then be interpreted within a given context. One area that is in great need of XAI is that of Clinical Decision Support Systems (CDSSs). These systems support medical practitioners in their clinic decision-making and in the absence of explainability may lead to issues of under or over-reliance. Providing explanations for how recommendations are arrived at will allow practitioners to make more nuanced, and in some cases, life-saving decisions. The need for XAI in CDSS, and the medical field in general, is amplified by the need for ethical and fair decision-making and the fact that AI trained with historical data can be a reinforcement agent of historical actions and biases that should be uncovered. We performed a systematic literature review of work to-date in the application of XAI in CDSS. Tabular data processing XAI-enabled systems are the most common, while XAI-enabled CDSS for text analysis are the least common in literature. There is more interest in developers for the provision of local explanations, while there was almost a balance between post-hoc and ante-hoc explanations, as well as between model-specific and model-agnostic techniques. Studies reported benefits of the use of XAI such as the fact that it could enhance decision confidence for clinicians, or generate the hypothesis about causality, which ultimately leads to increased trustworthiness and acceptability of the system and potential for its incorporation in the clinical workflow. However, we found an overall distinct lack of application of XAI in the context of CDSS and, in particular, a lack of user studies exploring the needs of clinicians. We propose some guidelines for the implementation of XAI in CDSS and explore some opportunities, challenges, and future research needs.


1993 ◽  
Vol 32 (01) ◽  
pp. 12-13 ◽  
Author(s):  
M. A. Musen

Abstract:Response to Heathfield HA, Wyatt J. Philosophies for the design and development of clinical decision-support systems. Meth Inform Med 1993; 32: 1-8.


2006 ◽  
Vol 45 (05) ◽  
pp. 523-527 ◽  
Author(s):  
A. Abu-Hanna ◽  
B. Nannings

Summary Objectives: Decision Support Telemedicine Systems (DSTS) are at the intersection of two disciplines: telemedicine and clinical decision support systems (CDSS). The objective of this paper is to provide a set of characterizing properties for DSTSs. This characterizing property set (CPS) can be used for typing, classifying and clustering DSTSs. Methods: We performed a systematic keyword-based literature search to identify candidate-characterizing properties. We selected a subset of candidates and refined them by assessing their potential in order to obtain the CPS. Results: The CPS consists of 14 properties, which can be used for the uniform description and typing of applications of DSTSs. The properties are grouped in three categories that we refer to as the problem dimension, process dimension, and system dimension. We provide CPS instantiations for three prototypical applications. Conclusions: The CPS includes important properties for typing DSTSs, focusing on aspects of communication for the telemedicine part and on aspects of decisionmaking for the CDSS part. The CPS provides users with tools for uniformly describing DSTSs.


Sign in / Sign up

Export Citation Format

Share Document