Variational Iteration Method for a Nonlinear Reaction-Diffusion Process

Author(s):  
Shu-Qiang Wang ◽  
Ji-Huan He

An extremely simple and elementary, but rigorous derivation of temperature distribution of a reaction-diffusion process is given using the variational iteration method. In this method, a trial function (an initial solution) is chosen with some unknown parameter, which is identified after a few iterations according to the given boundary conditions. Comparison with the exact solution shows that the method is very effective and convenient.

Author(s):  
Muhammad Nadeem ◽  
Hijaz Ahmad

In this paper, a well-known equation used in astrophysics and mathematical physics called the Lane-Emden equation is to be solved by a variational iteration method. The main purpose of this approach is to solve the singular initial value problems and also boundary value problem of Lane-Emden type equations. This technique overcomes its singularity at origin rapidly. It gives the approximate and exact solution with easily computable terms. The approach is illustrated with some examples to show its reliability and compactness.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
K. Maleknejad ◽  
M. Tamamgar

We reconstruct the variational iteration method that we call, parametric iteration method (PIM). The purposed method was applied for solving nonlinear Volterra integrodifferential equations (NVIDEs). The solution process is illustrated by some examples. Comparisons are made between PIM and Adomian decomposition method (ADM). Also exact solution of the 3rd example is obtained. The results show the simplicity and efficiency of PIM. Also, the convergence of this method is studied in this work.


Author(s):  
N. Okiotor ◽  
F. Ogunfiditimi ◽  
M. O. Durojaye

In this study, the Variational Iteration Method (VIM) is applied in finding the solution of differential equations with emphasis laid on the choice of the Lagrange multiplier used while employing VIM. Building on existing methods and variational theories, the operator D-Method and integrating factor are employed in certain aspects in the determination of exact Lagrange multiplier for VIM. When results of the computed exact Lagrange multiplier were compared with results of approximate Lagrange multiplier, it was observed that the computed exact Lagrange multiplier reduced significantly the number of iterations required to get a good approximate result, and in some cases the result converged to the exact solution after a single iteration. Evaluations are carried out using MAPLE Software.


2014 ◽  
Vol 24 (7) ◽  
pp. 1545-1552 ◽  
Author(s):  
Guanglu Zhou ◽  
Boying Wu

Purpose – The purpose of this paper is to investigate the inverse problem of determining a time-dependent heat source in a parabolic equation with nonlocal boundary and integral overdetermination conditions. Design/methodology/approach – The variational iteration method (VIM) is employed as a numerical technique to develop numerical solution. A numerical example is presented to illustrate the advantages of the method. Findings – Using this method, we obtain the exact solution of this problem. Whether or not there is a noisy overdetermination data, our numerical results are stable. Thus the VIM is suitable for finding the approximation solution of the problem. Originality/value – This method is based on the use of Lagrange multipliers for the identification of optimal values of parameters in a functional and gives rapidly convergent successive approximations of the exact solution if such a solution exists.


Sign in / Sign up

Export Citation Format

Share Document