Synergism of MW and Mvar Losses for Contingency Ranking Using Fuzzy Approach

Author(s):  
Yogesh Kumar Bichpuriya ◽  
P K Kalra ◽  
Ajay Kumar Saxena

Security assessment of a power system is very important function to detect any violation in the system and to ensure secure operation of the system in deregulated environment. Contingency ranking is the process of indexing the possible contingencies of system on the basis of their severity. The contingencies of higher ranking are further analyzed for detailed analysis. The contingencies based on the real power flow and the voltage deviations should be dealt simultaneously for better ranking. The paper presents fuzzy approach to combine ranking based on MW and Mvar losses and a new rank list is prepared. The proposed approach is tested on IEEE-30 bus test system.

Author(s):  
Elutunji Buraimoh ◽  
Funso Kehinde Ariyo ◽  
Micheal Omoigui ◽  
Innocent Ewaen Davidson

Electrical power systems are often required to operate at full loading capacity due to ever increasing demand and transmission line contingencies with limited grid expansion. This results in line overload and operating near system limit, thereby threatening system security. Utilization of existing system can be achieved using Flexible Alternating Current Transmission System (FACTS) devices without violating system limits. This research investigation involves static security assessment of a modelled IEEE 30-bus test system in MATLAB/SIMULINK/PSAT environment. The security status with the incorporation of combined Static Var Compensator (SVC), Thyristor Controlled Series Compensator (TCSC) and Interline Power Flow Controller (IPFC) were determined. Prior to this, Contingency Severity Index (CSI) based on Performance Index (PI) of Voltage and Active Power was employed to determine the optimal location of the FACTS devices. Sequential Quadratic Programming (SQP) was applied to determine the optimal sizing/percentage compensation of FACTS. Subsequently, power system with and without the incorporation of FACTS devices were modelled. The ability of the compensated system to withstand credible transmission line contingencies without violating the normal operating limits (bus voltage and line thermal) was examined and presented. The paper presents how combined SVC/TCSC and an IPFC aided the power system to boost its steady state security in the face of possible line contingencies.


Author(s):  
Kanagasabai Lenin

This paper proposes Enhanced Frog Leaping Algorithm (EFLA) to solve the optimal reactive power problem. Frog leaping algorithm (FLA) replicates the procedure of frogs passing though the wetland and foraging deeds. Set of virtual frogs alienated into numerous groups known as “memeplexes”. Frog’s position’s turn out to be closer in every memeplex after few optimization runs and certainly, this crisis direct to premature convergence. In the proposed Enhanced Frog Leaping Algorithm (EFLA) the most excellent frog information is used to augment the local search in each memeplex and initiate to the exploration bound acceleration. To advance the speed of convergence two acceleration factors are introduced in the exploration plan formulation. Proposed Enhanced Frog Leaping Algorithm (EFLA) has been tested in standard IEEE 14,300 bus test system and simulation results show the projected algorithm reduced the real power loss considerably.


2013 ◽  
Vol 64 (1) ◽  
Author(s):  
I. S. Saeh ◽  
M. W. Mustafa

This paper proposes RBF-NN for classification and performance evaluation of static security assessment in deregulated power system. This study suggests an attribute selection and classification algorithms for static security evaluation (SSE) and its impact is proposed. For the base case, pure pool dispatch (with no bilateral transactions) and bilateral transaction comparisons are discussed on IEEE57- bus system. In this paper, a comprehensive comparison of AI classifiers to examine whether the power system is secured under steady-state operating conditions is presented. The proposed classifier is implemented on a 30 and 57 IEEE test system. To assess the actual overall performance regarding studying techniques, this research proposes performance evaluation schemes vis CCR, TPR and TNR and implemented on various IEEE test systems. The simulation results have shown the powerfulness of the proposed method as compare to another proposed AI classifiers. 


2013 ◽  
Vol 385-386 ◽  
pp. 668-674
Author(s):  
Jia Yang ◽  
Hai Bao ◽  
Ling Wang ◽  
Gang Liu

Steady-state power flow calculation belongs to power system steady-state analysis, and the data used in calculation should be steady-state data. However, the existing SCADA system hasnt distinguished the transient data from the steady-state data. The real-time measured data reflect the dynamic electric power system. It is the right reason for not all of the real-time measured power can be used for power flow calculation. In another word, it causes the matching problem between measured data and power flow calculations. Based on the current situation of information collection system, the characteristics of the measured data had been analyzed in this paper. And an effective acquisition method for steady-state measured data is proposed on the theoretical basis of the law of large numbers. It uses the average value of the measured data that in the same load state to approximate the steady-state true value in one period. And the steady-state data can be used in power flow calculation. The simulation results show that the method proposed in this paper ensures the accuracy and reliability of power flow calculation.


2012 ◽  
Vol 2012 ◽  
pp. 1-19
Author(s):  
G. Ozdemir Dag ◽  
Mustafa Bagriyanik

The unscheduled power flow problem needs to be minimized or controlled as soon as possible in a deregulated power system since the transmission systems are mostly operated at their power-carrying limits or very close to it. The time spent for simulations to determine the current states of all the system and control variables of the interconnected power system is important. Taking necessary action in case of any failure of equipment or any other occurrence of an undesired situation could be critical. Using supercomputing facilities and parallel computing techniques together decreases the computation time greatly. In this study, a parallel implementation of a multiobjective optimization approach based on both genetic algorithms and fuzzy decision making to manage unscheduled flows is presented. Parallel computation techniques are applied using supercomputers (high-performance computers). The proposed method is applied to the IEEE 300 bus test system. Two different cases for some parameters of GA are considered to see the power of parallel computation technique. Then the simulation results are presented.


2010 ◽  
Vol 59 (3-4) ◽  
pp. 121-140 ◽  
Author(s):  
Łukasz Nogal ◽  
Jan Machowski

WAMS - based control of series FACTS devices installed in tie-lines of interconnected power systemThis paper addresses the state-variable stabilising control of the power system using such series FACTS devices as TCPAR installed in the tie-line connecting control areas in an interconnected power system. This stabilising control is activated in the transient state and is supplementary with respect to the main steady-state control designed for power flow regulation. Stabilising control laws, proposed in this paper, have been derived for a linear multi-machine system model using direct Lyapunov method with the aim to maximise the rate of energy dissipation during power swings and therefore maximisation their damping. The proposed control strategy is executed by a multi-loop controller with frequency deviations in all control areas used as the input signals. Validity of the proposed state-variable control has been confirmed by modal analysis and by computer simulation for a multi-machine test system.


2019 ◽  
Vol 8 (2) ◽  
pp. 1672-1677

The power fluctuation is a major problem faced by the consumers in power system,to resolve thisInterline Power Flow Controlleris used. This article proposes three and five-level Interline Power Flow Controller for power quality enhancement of fourteen bus structure. The main objective of this article is to diminish the THDcreated by IPFC. Simulations carried out and it results indicate that there is an improvement in the output of IPFC in terms of THD, real power, and reactive power. The simulation results indicate that THD of Five Level Based IPFC (FLBIPFC) is less than that of the Three-Level Based IPFC (TLBIPFC) for fourteen bussystem.


Author(s):  
Mahmood Khalid Zarkani ◽  
Ahmed Sahib Tukkee ◽  
Mohammed Jasim Alali

<p>The rapid and enormous growths of the power electronics industries have made the flexible AC transmission system (FACTS) devices efficient and viable for utility application to increase power system operation controllability as well as flexibility. This research work presents the application of an evolutionary algorithm namely differential evolution (DE) approach to optimize the location and size of three main types of FACTS devices in order to minimize the power system losses as well as improving the network voltage profile. The utilized system has been reactively loaded beginning from the base to 150% and the system performance is analyzed with and without FACTS devices in order to confirm its importance within the power system. Thyristor controlled series capacitor (TCSC), unified power flow controller (UPFC) and static var compensator (SVC) are used in this research work to monitor the active and reactive power of the carried out system. The adopted algorithm has been examined on IEEE 30-bus test system. The obtained research findings are given with appropriate discussion and considered as quite encouraging that will be valuable in electrical grid restructuring.</p>


Sign in / Sign up

Export Citation Format

Share Document