scholarly journals Optimization of Supercritical Carbon Dioxide Extraction of Flaxseed Oil Using Response Surface Methodology

Author(s):  
Shun-shan Jiao ◽  
Dong Li ◽  
Zhi-gang Huang ◽  
Zhen-shan Zhang ◽  
Bhesh Bhandari ◽  
...  

The optimal conditions for the supercritical carbon dioxide (SC-CO2) extraction of flaxseed oil from flaxseed were determined using response surface methodology (RSM). A second-order regression for rotation-orthogonal composite design was used to study the effects of three independent variables: extraction pressure (MPa), extraction temperature (oC) and CO2 flow rate (L/h) on the yield of flaxseed oil. The independent variables were coded at five levels and their actual values selected on the basis of preliminary experiments. The results indicated that the yield of flaxseed oil was beyond 29% at a probability of 95% in the range of extraction pressure: 38.6-42.3 MPa, extraction temperature: 52.3-57.0 oC, and CO2 flow rate: 27.8-31.2 L/h. The optimal extraction conditions were extraction pressure of 41 MPa, extraction temperature of 56 oC and CO2 flow rate of 31 L/h according to the analysis of response surface. In this condition, the experimental yield of flaxseed oil was 29.96%, which was close to the predicted value of 30.52%.

Author(s):  
Maria Cristina Macawile ◽  
Joseph Auresenia

This study was conducted to optimize the supercritical carbon dioxide (scCO2) extraction of oil from Gliricidia sepium seeds using response surface methodology. Initial experiments were carried out using scCO2 and scCO2 with co-solvent n-hexane to determine the effect of co-solvent addition in oil yield. In order to obtain the maximum yield, experiments were conducted using Response Surface Methodology - Face Centered Central Composite Design (RSM – FCCD) under the following conditions: pressure of 20, 30, and 40 MPa, temperature of 50, 60, and 70°C, and CO2 flow rate of 2, 2.5, and 3 mL/min. A second-order polynomial with extended cubic interaction model was significantly fitted (p < 0.05), and a high coefficient determination value (R2 = 0.98) was recorded. At a constant extraction time of 60 minutes, the best extraction yield (12.12%) was obtained at 60°C, 40 MPa, and 2.5 mL/min. The pressure, temperature, and CO2 flow rate were all found to have a significant effect on the oil yield. The oil was used in biodiesel production and its methyl ester composition was analyzed using Gas Chromatography-Flame Ionization Detector (GC-FID).


2005 ◽  
Vol 48 (1) ◽  
pp. 155-160 ◽  
Author(s):  
Ana Cristina Atti-Santos ◽  
Marcelo Rossato ◽  
Luciana Atti Serafini ◽  
Eduardo Cassel ◽  
Patrick Moyna

In this work lime essential oils were extracted by hydrodistillation and supercritical carbon dioxide. In the case of hydrodistillation, the parameters evaluated were extraction time and characteristics of the plant material. In supercritical extraction, the parameters evaluated were temperature, pressure, CO2 flow, extraction time and material characteristics. Considering citral content, the best results for hydrodistillation were obtained with a distillation time of 3 hours using whole peels. The best results for supercritical extraction were found using 60ºC, 90 bar, at a CO2 flow rate of 1 mL/ min for 30 minutes using milled peels. The best yields of lime oil were obtained by hydrodistillation (5.45% w/w) and supercritical extraction (7.93% w/w) for milled peels.


Sign in / Sign up

Export Citation Format

Share Document