Nondestructive Testing for Infrastructure Maintenance Using Ultra-compact X-ray and Neutron Sensors

2021 ◽  
Vol 90 (1) ◽  
pp. 76-82
Author(s):  
Akifumi KOIKE ◽  
Toru AOKI
Author(s):  
V. B. Bessonov

Introduction. X-ray inspection plays a unique role among all nondestructive testing methods for products and materials due to sufficiently high resolution and high penetrability. The present study is designed to consider the key features of microfocus X-ray sources, their areas of application, and main technical characteristics.Aim. The paper aims to systematize information and review modern X-ray radiation sources for the implementation of microfocus radiography.Materials and methods. The main designs of microfocus X-ray tubes (soldered and demountable) were considered relying on the experience of the St Petersburg State Electrotechnical University in developing and operating such equipment, as well as the experience and open-access publications of foreign researchers and developers. Data collected by leading research teams over the last ten years were analyzed.Results. The paper presents design features for each main type of microfocus X-ray tubes – soldered and demountable. All key structural elements are considered: an anode assembly, a cathode assembly, and a focusing system. The influence of anode target material on the X-ray tube radiation spectrum is shown. An original design of a liquid-anode microfocus X-ray tube is described to demonstrate its key features and advantages. In addition, the paper gives an overview of cathodes used in microfocus X-ray tubes (tungsten cathode and lanthanum hexaboride cathode), as well as providing a detailed description of calculations performed for focusing systems. Finally, the designs of modern X-ray tubes are presented.Conclusion. Modern X-ray tubes are high-tech products that allow for high-resolution research of various objects. The main advantage of testing performed with the use of X-ray tubes consists in high resolution (micron and submicron). The X-ray images of test objects used to determine their spatial resolution are given, which clearly illustrate the vast possibilities of this technology. In addition, ways to improve microfocus X-ray tubes are briefly discussed. The considered materials can be useful in selecting a nondestructive testing tool, as well as in developing and creating X-ray systems on the basis of microfocus X-ray tubes.


2020 ◽  
Vol 10 (23) ◽  
pp. 8516
Author(s):  
Maximilian Schmid ◽  
Sri Krishna Bhogaraju ◽  
E Liu ◽  
Gordon Elger

Reliability is one of the major requirements for power and opto-electronic devices across all segments. High operation temperature and/or high thermomechanical stress cause defects and degradation of materials and interconnects, which may lead to malfunctions with costly or even life-threatening consequences. To avoid or at least reduce failures, nondestructive testing (NDT) methods are common within development and production of power and opto-electronics. Currently, the dominating NDT methods are X-ray, scanning acoustic microscopy (SAM), and transient thermal analysis (TTA). However, they have different strengths and weaknesses with respect to materials and mechanical designs. This paper compares these NDT methods for different interconnect technologies, i.e., reflow soldering, adhesive, and sintered interconnection. While X-ray provided adequate results for soldered interfaces, inspection of adhesives and sintered interconnects was not possible. With SAM, evaluation of adhesives and sintered interconnects was also feasible, but quality depended strongly on the sample under test. TTA enabled sufficiently detailed results for all the interconnect applications. Automated TTA equipment, as the in-house developed tester used within this investigation, enabled measurement times compatible with SAM and X-ray. In the investigations, all methods revealed their pros and cons, and their selection has to depend on the sample under tests and the required analysis depth and data details. In the paper, guidelines are formulated for an appropriate decision on the NDT method depending on sample and requirements.


Author(s):  
Takuya Natsui ◽  
Tomohiko Yamamoto ◽  
Fumito Sakamoto ◽  
Akira Sakumi ◽  
Katsuhiro Dobashi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document