operation temperature
Recently Published Documents


TOTAL DOCUMENTS

374
(FIVE YEARS 97)

H-INDEX

23
(FIVE YEARS 4)

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 605
Author(s):  
Voitech Stankevic ◽  
Nerija Zurauskiene ◽  
Skirmantas Kersulis ◽  
Valentina Plausinaitiene ◽  
Rasuole Lukose ◽  
...  

The results of colossal magnetoresistance (CMR) properties of La0.83Sr0.17Mn1.21O3 (LSMO) films grown by pulsed injection MOCVD technique onto various substrates are presented. The films with thicknesses of 360 nm and 60 nm grown on AT-cut single crystal quartz, polycrystalline Al2O3, and amorphous Si/SiO2 substrates were nanostructured with column-shaped crystallites spread perpendicular to the film plane. It was found that morphology, microstructure, and magnetoresistive properties of the films strongly depend on the substrate used. The low-field MR at low temperatures (25 K) showed twice higher values (−31% at 0.7 T) for LSMO/quartz in comparison to films grown on the other substrates (−15%). This value is high in comparison to results published in literature for manganite films prepared without additional insulating oxides. The high-field MR measured up to 20 T at 80 K was also the highest for LSMO/quartz films (−56%) and demonstrated the highest sensitivity S = 0.28 V/T at B = 0.25 T (voltage supply 2.5 V), which is promising for magnetic sensor applications. It was demonstrated that Mn excess Mn/(La + Sr) = 1.21 increases the metal-insulator transition temperature of the films up to 285 K, allowing the increase in the operation temperature of magnetic sensors up to 363 K. These results allow us to fabricate CMR sensors with predetermined parameters in a wide range of magnetic fields and temperatures.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 399
Author(s):  
Kee-Ryung Park ◽  
Ryun Na Kim ◽  
Yoseb Song ◽  
Jinhyeong Kwon ◽  
Hyeunseok Choi

Herein, a facile fabrication process of ZnO-ZnFe2O4 hollow nanofibers through one-needle syringe electrospinning and the following calcination process is presented. The various compositions of the ZnO-ZnFe2O4 nanofibers are simply created by controlling the metal precursor ratios of Zn and Fe. Moreover, the different diffusion rates of the metal oxides and metal precursors generate a hollow nanostructure during calcination. The hollow structure of the ZnO-ZnFe2O4 enables an enlarged surface area and increased gas sensing sites. In addition, the interface of ZnO and ZnFe2O4 forms a p-n junction to improve gas response and to lower operation temperature. The optimized ZnO-ZnFe2O4 has shown good H2S gas sensing properties of 84.5 (S = Ra/Rg) at 10 ppm at 250 ∘C with excellent selectivity. This study shows the good potential of p-n junction ZnO-ZnFe2O4 on H2S detection and affords a promising sensor design for a high-performance gas sensor.


2022 ◽  
Vol 14 (2) ◽  
pp. 612
Author(s):  
Senem Onen Cinar ◽  
Abdullah Nsair ◽  
Nils Wieczorek ◽  
Kerstin Kuchta

Temperature management is one of the primary considerations of biogas plant operation, and influences physical and biochemical processes. An increase in the temperature leads to an increase in the hydrolysis rate of the feedstock, while it can inhibit microorganisms taking part in different stages of anaerobic digestion. Because of the complexity of the biochemical processes within the anaerobic digestion process, there is a lack of knowledge about the effects of temperature and temperature change on efficiency. Moreover, the impact of stirring directly affects the temperature distribution in the anaerobic digestion reactors. In this study, the temperature management in an industrial-scale biogas plant was examined, and the effect of small temperature changes (from the operation temperature 42 °C) on the efficiency was studied in a laboratory under two different conditions: with stirring (at 40 and 44 °C) and without stirring (at 40 and 44 °C). The examination results from the biogas plant showed that heat transfer in the reactor was not sufficient at the bottom of the digester. Adaptation of the post-digester samples to the temperature changes was more challenging than that of the digester samples. From digestate samples, higher biomethane generation could be obtained, resulting from sufficient contact between microorganisms, enzymes, and substrates. Overall, differences between these changing conditions (approx. 6 NmL CH4 g VS−1) were not significant and could be adapted by the process.


Ceramist ◽  
2021 ◽  
Vol 24 (4) ◽  
pp. 424-437
Author(s):  
Seokhee Lee ◽  
Sang Won Lee ◽  
Suji Kim ◽  
Tae Ho Shin

High temperature electrolysis is a promising option for carbon-free hydrogen production and huge energy storage with high energy conversion efficiencies from renewable and nuclear resources. Over the past few decades, yttria-stabilized zirconia (YSZ) based ion conductor has been widely used as a solid electrolyte in solid oxide electrolysis cells (SOECs). However, its high operation temperature and lower conductivity in the appropriate temperature range for solid electrochemical devices were major drawbacks. Regarding improving ionic-conducting electrolytes, several groups have contributed significantly to developing and applying LaGaO3 based perovskite as a superior ionic conductor. La(Sr)Ga(Mg)O3 (LSGM) electrolyte was successfully validated for intermediate-temperature solid oxide fuel cells (SOFCs) but was rarely conducted on SOECs for its high efficient electrolysis performance. Their lower mechanical strengths or higher reactivity with electrode compared with the YSZ electrolysis cells, which make it difficult to choose compatible materials, remain major challenges. In this field, SOECs have attracted a great attention in the last few years, as they offer significant power and higher efficiencies compared to conventional YSZ based electrolysers. Herein, SOECs using LSGM based electrolyte, their applications, high performance, and their issues will be reviewed.


Ceramist ◽  
2021 ◽  
Vol 24 (4) ◽  
pp. 424-437
Author(s):  
Seokhee Lee ◽  
Sang Won Lee ◽  
Suji Kim ◽  
Tae Ho Shin

High temperature electrolysis is a promising option for carbon-free hydrogen production and huge energy storage with high energy conversion efficiencies from renewable and nuclear resources. Over the past few decades, yttria-stabilized zirconia (YSZ) based ion conductor has been widely used as a solid electrolyte in solid oxide electrolysis cells (SOECs). However, its high operation temperature and lower conductivity in the appropriate temperature range for solid electrochemical devices were major drawbacks. Regarding improving ionic-conducting electrolytes, several groups have contributed significantly to developing and applying LaGaO3 based perovskite as a superior ionic conductor. La(Sr)Ga(Mg)O3 (LSGM) electrolyte was successfully validated for intermediate-temperature solid oxide fuel cells (SOFCs) but was rarely conducted on SOECs for its high efficient electrolysis performance. Their lower mechanical strengths or higher reactivity with electrode compared with the YSZ electrolysis cells, which make it difficult to choose compatible materials, remain major challenges. In this field, SOECs have attracted a great attention in the last few years, as they offer significant power and higher efficiencies compared to conventional YSZ based electrolysers. Herein, SOECs using LSGM based electrolyte, their applications, high performance, and their issues will be reviewed.


Batteries ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 87
Author(s):  
Emil Holm Kirk ◽  
Filippo Fenini ◽  
Sara Noriega Oreiro ◽  
Anders Bentien

The maximum operation temperature of the vanadium solution in vanadium flow batteries is typically limited to 40 °C to prevent the damaging thermal precipitation of V2O5. Therefore, the operation of batteries at high ambient temperatures is an important aspect to tackle for stationary storage. In the present work, a comprehensive study of the high temperature stability of redox solutions for vanadium flow batteries was performed. In particular, focus was placed on a comparison between batch and in operando precipitation experiments. It was found that, despite being a widely used method in the literature, caution should be taken when assessing the precipitation through capacity fade due to the large influence of external oxidation and cycling parameters, plausibly leading to an incorrect interpretation of the results. The in operando experiments consistently show a precipitation temperature almost 10–20 °C higher than in the batch tests at a 100% state of charge for the same time lapse.


Research ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Zhuanghe Ren ◽  
Xin Zhang ◽  
Hai-Wen Li ◽  
Zhenguo Huang ◽  
Jianjiang Hu ◽  
...  

Sodium alanate (NaAlH4) with 5.6 wt% of hydrogen capacity suffers seriously from the sluggish kinetics for reversible hydrogen storage. Ti-based dopants such as TiCl4, TiCl3, TiF3, and TiO2 are prominent in enhancing the dehydrogenation kinetics and hence reducing the operation temperature. The tradeoff, however, is a considerable decrease of the reversible hydrogen capacity, which largely lowers the practical value of NaAlH4. Here, we successfully synthesized a new Ti-dopant, i.e., TiH2 as nanoplates with ~50 nm in lateral size and ~15 nm in thickness by an ultrasound-driven metathesis reaction between TiCl4 and LiH in THF with graphene as supports (denoted as NP-TiH2@G). Doping of 7 wt% NP-TiH2@G enables a full dehydrogenation of NaAlH4 at 80°C and rehydrogenation at 30°C under 100 atm H2 with a reversible hydrogen capacity of 5 wt%, superior to all literature results reported so far. This indicates that nanostructured TiH2 is much more effective than Ti-dopants in improving the hydrogen storage performance of NaAlH4. Our finding not only pushes the practical application of NaAlH4 forward greatly but also opens up new opportunities to tailor the kinetics with the minimal capacity loss.


2021 ◽  
Author(s):  
Dmitry Terentyev ◽  
Michael Rieth ◽  
Gerald Pintsuk ◽  
Johann Riesch ◽  
Alexander Von Muller ◽  
...  

Abstract The present contribution highlights results of the recent irradiation campaigns applied to screen mechanical properties of advanced tungsten and copper-based materials – main candidates for the application in the plasma-facing components (PFC) in the European DEMO, which has also been presented at 28th IAEA Fusion Energy Conference. The main challenges in the formulated irradiation programme were linked to: (I) assessment of the ductile-to-brittle transition temperature (DBTT) of newly developed tungsten-based materials; (ii) investigation of an industrial pure tungsten grade under high temperature irradiation, reflecting operational conditions in the high flux divertor region; (iii) assessment of the high temperature strength of CuCrZr-based alloys and composites developed to enable the extension of the operational window for the heat sink materials. The development and choice of the advanced materials is driven naturally by the need to extend the operation temperature/fluence window thereby enlarging the design space for PFCs. The obtained results helped identifying the prospective tungsten and copper-based material grades as well as yielded a number of unexpected results pointing at severe degradation of the mechanical properties due to the irradiation. The results are discussed along with the highlights of the microstructural examination. An outlook for near future investigations involving in-depth post-irradiation examination and further irradiation campaigns is provided.


Chemosensors ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 340
Author(s):  
Nikolay Samotaev ◽  
Pavel Dzhumaev ◽  
Konstantin Oblov ◽  
Alexander Pisliakov ◽  
Ivan Obraztsov ◽  
...  

A reduced size thermocatalytic gas sensor was developed for the detection of methane over the 20% of the explosive concentration. The sensor chip is formed from two membranes with a 150 µm diameter heated area in their centers and covered with highly dispersed nano-sized catalyst and inert reference, respectively. The power dissipation of the chip is well below 70 mW at the 530 °C maximum operation temperature. The chip is mounted in a novel surface mounted metal-ceramic sensor package in the form-factor of SOT-89. The sensitivity of the device is 10 mV/v%, whereas the response and recovery times without the additional carbon filter over the chip are <500 ms and <2 s, respectively. The tests have shown the reliability of the new design concerning the hotplate stability and massive encapsulation, but the high degradation rate of the catalyst coupled with its modest chemical power limits the use of the sensor only in pulsed mode of operation. The optimized pulsed mode reduces the average power consumption below 2 mW.


2021 ◽  
Vol 2086 (1) ◽  
pp. 012086
Author(s):  
R A Khabibullin ◽  
D S Ponomarev ◽  
D V Ushakov ◽  
A A Afonenko

Abstract Over the past two decades, the operation temperature of terahertz quantum cascade lasers (THz QCLs) has continuously increased from cryogenic level to the current record value of 250 K (about -23°C) [1]. Here we review the state-of-the-art and future prospects of high-temperature THz QCL designs with two-quantum wells in active module based on conventional heterojunction GaAs/AlGaAs and alternative material system HgCdTe. We have analyzed the temperature dependence of the peak gain and predicted the maximum operation temperatures of the given designs.


Sign in / Sign up

Export Citation Format

Share Document