scholarly journals Improvement of Fatigue Strength of Aluminum Alloy Welded Joint by High Hardness and Large Specific Gravity Shot Peening

2004 ◽  
Vol 22 (4) ◽  
pp. 524-530 ◽  
Author(s):  
Masayoshi HASEGAWA ◽  
Hiroaki SUZUKI
2009 ◽  
Vol 23 (5) ◽  
pp. 360-368 ◽  
Author(s):  
Masayoshi Hasegawa ◽  
Hiroaki Suzuki ◽  
Ken Miura

2002 ◽  
Vol 51 (9Appendix) ◽  
pp. 156-161
Author(s):  
Hiizu OCHI ◽  
Takeshi SAWAI ◽  
Yoshiaki YAMAMOTO ◽  
Masayuki KURITA ◽  
Koichi OGAWA ◽  
...  

Metals ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 744 ◽  
Author(s):  
Jonas Hensel ◽  
Hamdollah Eslami ◽  
Thomas Nitschke-Pagel ◽  
Klaus Dilger

Shot peening is a mechanical surface treatment to improve the fatigue strength of metallic components. Similarities exist between regular shot peening and conventional industrial clean blasting. However, the main difference between these two processes is the peening media used and the lack of control and documentation of peening parameters. The clean blasting process is not yet qualified to optimize fatigue enhancement, although it holds a similar potential to regular shot peening. Clean blasting is frequently applied to welded components, with the purpose of surface preparation for application of corrosion protection. This article presents the results of regular shot peened double V-groove (DV) butt welds made from construction steels S355N and S960QL, as well as the high strength aluminum alloy Al-6082. The peening parameters are varied widely. Furthermore, the effect of coverage and intensity is investigated to test the robustness of the peening processes. The data is completed with industrially clean blasted welds, representing typical workshop conditions. The overall objective of this work is to derive minimum peening parameters that still allow significant fatigue strength benefits. The presented data show a high robustness of the fatigue results to peening parameters.


2002 ◽  
Vol 124 (2) ◽  
pp. 135-139 ◽  
Author(s):  
Hitoshi Soyama ◽  
Kenichi Saito ◽  
Masumi Saka

Cavitation impact, which normally produces severe damage in hydraulic machinery, can be used to modify surfaces in the same way as shot peening. Cavitation impact enables the surface of a material to be peened without the use of shot, thus it is called cavitation shotless peening. As there are no solid body collisions occurring in this peening process, the roughness of the peened surface should be less than that produced by shot peening. This characteristic makes it suitable for peening soft metals. In order to demonstrate the improvement of the fatigue strength of aluminum alloy by this process, specimens were subjected to the process, and then tested in a rotating bending fatigue test. Cavitation impacts were produced and controlled by using a submerged high speed water jet with cavitation, i.e., a cavitating jet. It was revealed that the fatigue strength of an aluminum alloy specimen treated by this peening process was 50% stronger than that of a specimen without peening.


Sign in / Sign up

Export Citation Format

Share Document