rotating bending fatigue
Recently Published Documents


TOTAL DOCUMENTS

303
(FIVE YEARS 38)

H-INDEX

16
(FIVE YEARS 2)

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Tugce Tezel ◽  
Volkan Kovan

Purpose This study aims to reveal that fatigue life is improved using heat treatment in the rotational bending fatigue test, which determines the fatigue behavior closest to service conditions. Design/methodology/approach It is essential to know the mechanical behavior of the parts produced by additive manufacturing under service conditions. In general, axial stress and plane bending tests are used by many researchers because they are practical: the service conditions cannot be sufficiently stimulated. For this reason, the rotating bending fatigue test, which represents the conditions closest to the service conditions of a load-bearing machine element, was chosen for the study. In this study, the rotational bending fatigue behavior of X3NiCoMoTi18-9–5 (MS1) maraging steel specimens produced by the selective laser melting (SLM) technique was experimentally investigated under various heat treatments conditions. Findings As a result of the study, MS1 produced by additive manufacturing is a material suitable for heat treatment that has enabled the heat treatment to affect fatigue strength positively. Cracks generally initiate from the outer surface of the sample. Fabrication defects have been determined to cause all cracks on the sample surface or regions close to the surface. Research limitations/implications While producing the test sample, printing was vertical to the print bed, and various heat treatments were applied. The rotating bending fatigue test was performed on four sample groups comprising as-fabricated, age-treated, solution-treated and solution + age-treated conditions. Originality/value Most literature studies have focused on the axial fatigue strength, printing orientation and heat treatment of maraging steels produced with Direct Metal Laser Sintering (DMLS); many studies have also investigated crack propagation behaviors. There are few studies in the literature covering conditions of rotating bending fatigue. However, the rotating bending loading state is the service condition closest to modern machine element operating conditions. To fill this gap in the literature, the rotating bending fatigue behavior of the alloy, which was maraging steel (X3NiCoMoTi18-9–5, 1.2709) produced by SLM, was investigated under a variety of heat treatment conditions in this study.


2021 ◽  
Vol 11 (7) ◽  
pp. 1200-1206
Author(s):  
Xingfu Yu ◽  
Yue Gao ◽  
Shijie Wang ◽  
Huimin Wang ◽  
Yunzhi Xia ◽  
...  

By means of the post heat treatment of deep tempering on the aviation bearing steel G13Cr4Mo4Ni4V after quenching and high-temperature tempering, the effect of the treatment on microstructure and mechanical properties of the steel was studied. Results show that, the deep tempering promotes the precipitation of carbides along the boundaries and on the bodies of martensite blocks. In this process, the block martensite structure is decomposed and refined. After three or more times of deep tempering treatments, the hardness of the steel is slightly improved due to the carbide precipitation on the boundaries and bodies of the martensite blocks and the growth of carbides. After 5 times of deep tempering treatments, the impact toughness and the elongation of the samples are slightly reduced, while the tensile strength is increased. The area of the crack propagation zone on the rotating-bending fatigue fracture increases, while that of the transient fracture zone decreases. The ultimate strength of the rotating-bending fatigue is increased from 560 MPa to 660 MPa, with the increased extent of 17.8%, which results from the decomposition and refinement of martensite blocks.


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 964
Author(s):  
Yoshihiko Uematsu ◽  
Toshifumi Kakiuchi ◽  
Yaodong Han ◽  
Masaki Nakajima

Cantilever-type rotating bending fatigue tests were conducted under a very high cycle fatigue regime using conventionally manufactured Ti-6Al-4V specimens having drilled artificial defects with different sizes. The relationship between fatigue limit and defect size was defined as a fatigue limit design curve considering the transition from the fracture-mechanics dominating area to the fatigue-limit dominating area. A conventional Murakami’s equation was applicable as a design curve of additively manufactured Ti-6Al-4V with defects at 107 cycles. However, conventional equation gave un-conservative predictions for the fatigue limit at 108 cycles. Therefore, two kinds of modified Murakami’s equation were proposed as fatigue limit design curves for the very high cycle fatigue regime. Simple parallel shift of Murakami’s equation gave a conservative fatigue limit, whilst better result was obtained by changing the slope of Murakami’s equation. The proposed design curve was valid for the defect sizes ranging from 10 to 500 μm.


2021 ◽  
Vol 11 (9) ◽  
pp. 4307
Author(s):  
Yuki Nakamura ◽  
Koichiro Nambu ◽  
Toshikazu Akahori ◽  
Toshihiro Shimizu ◽  
Shoichi Kikuchi

Fine particle peening (FPP) using hydroxyapatite (HAp) shot particles was performed to improve the fatigue strength and form a HAp transfer layer on a beta titanium alloy (Ti–22V–4Al). The surface microstructures of the FPP-treated specimen were characterized using scanning electron microscopy, micro-Vickers hardness testing, energy dispersive X-ray spectrometry, X-ray diffraction, and electron backscattered diffraction. A HAp transfer layer with a thickness of 5.5 μm was formed on the surface of the Ti–22V–4Al specimen by FPP. In addition, the surface hardness of the Ti–22V–4Al was increased, and high compressive residual stress was generated on the specimen surface by FPP. Rotating bending fatigue tests were performed at room temperature in laboratory air over a wide cycle-life region (103–109 cycles). In the long cycle-life regime, the fatigue strength at 107 cycles of the FPP-treated specimen became higher than that of the untreated specimen. This result is attributed to the formation of a work-hardened layer with high compressive residual stress by FPP. However, the fatigue strength was not improved by FPP in the short cycle-life regime, because fatigue cracks were initiated at surface defects formed during the FPP process. The fatigue fracture mode of the FPP-treated specimens shifted from surface-initiated fracture to subsurface-initiated fracture at a stress amplitude level of 600 MPa.


Sign in / Sign up

Export Citation Format

Share Document