scholarly journals Fast Finite Element Analysis of Weld Residual Stress in Large-Diameter Thick-Walled Stainless Steel Pipe Joints and Its Experimental Validation

2013 ◽  
Vol 31 (4) ◽  
pp. 129s-133s ◽  
Author(s):  
Akira Maekawa ◽  
Hisashi Serizawa ◽  
Keiji Nakacho ◽  
Hidekazu Murakawa
2006 ◽  
Vol 524-525 ◽  
pp. 549-554 ◽  
Author(s):  
W.R. Mabe ◽  
W.J. Koller ◽  
A.M. Holloway ◽  
P.R. Stukenborg

This paper presents the results of an experimental validation of the deep hole drill residual stress measurement method. A validation test specimen was fabricated and plastically loaded to impose a permanent residual stress field within the specimen. The validation test specimen was designed to provide a variety of stress profiles as a function of location within the specimen. A finite element analysis of the validation test specimen was performed in order to provide a reference solution for comparison to the deep hole drill experimental results. Results from experimental testing of the validation test specimen agree well with the finite element analysis reference solution, thereby providing further validation of the deep hole drill method to measure residual stresses.


Author(s):  
D.-J. Shim ◽  
S. Kalyanam ◽  
E. Punch ◽  
T. Zhang ◽  
F. Brust ◽  
...  

The Advanced Finite Element Analysis (AFEA) methodology has been developed by the US NRC and the nuclear industry to evaluate the natural crack growth of primary water stress corrosion cracking (PWSCC) in nickel-based alloy materials. The AFEA methodology allows the progression of a planar crack subjected to typical SCC-type growth laws by calculating stress intensity factors at every nodal point along the crack front, and incrementally advancing the crack front in a more natural manner. This paper describes the enhancements that have been made to the existing AFEA methodology. The most significant enhancement was the feature to evaluate axial crack growth where the crack was contained within the susceptible material. In this paper, this methodology was validated by performing an AFEA evaluation for the axial crack that was found in the V.C. Summer hot leg dissimilar metal weld. Other enhancements to the AFEA methodology include; upgrade to the PipeFracCAE© software developed by Engineering Mechanics Corporation of Columbus, feature to handle non-idealized circumferential through-wall cracks, mapping of weld residual stress for crack growth, and determination of limiting crack size using elastic-plastic J-integral analysis that included secondary stress (weld residual stress and thermal transient stress) effects.


Author(s):  
Alexandra K. Zumpetta ◽  
Andrew W. Stockdale ◽  
Trevor G. Hicks ◽  
William R. Mabe ◽  
Jessica L. Coughlin

Abstract Tensile residual stresses associated with stainless steel pipe welds can promote in-service cracking and influence the need for inspections. Previous research via finite element analysis (FEA) [1] and experimental characterization [2] has shown that welds in thick wall pipe can produce compressive residual stresses at the inner diameter (ID) surface. However, research that has evaluated the relationship between the number of weld layers, stemming from different weld bead sizes, and the resulting pipe residual stress profiles is limited. This investigation used two-dimensional (2D) FEA to evaluate the influence of the number of weld layers (resulting from different weld bead sizes) on the ID surface and through-wall residual stress profiles for varying stainless steel pipe radii, thicknesses, and weld joint geometries. The findings herein are compared to previous experimental results [2]. The results demonstrated that for the larger pipe sizes and the welding conditions investigated, increasing the number of weld layers (reducing individual weld bead sizes) reduced the ID surface tensile axial residual stresses. In the larger pipe sizes, the magnitude of the tensile residual stresses extending through (into) the pipe wall is also reduced with an increased number of weld layers. The FEA results show that the weld joint geometry may not affect the residual stress profiles as strongly as do the number of weld layers, based on the similarities in the tensile stress values for the joint geometries that were evaluated.


2008 ◽  
Vol 130 (4) ◽  
Author(s):  
Wen-Chun Jiang ◽  
Jian-Ming Gong ◽  
Hu Chen ◽  
S. T. Tu

This paper presented a finite element analysis of the effect of brazed residual stress on creep for stainless steel plate-fin structure using finite element code ABAQUS. The as-brazed residual stress distribution generated during the brazing process was obtained. Two cases, which are denoted Cases 1 and 2, were analyzed and compared to discuss the effect of as-brazed residual stress on creep. Case 1 was to carry out creep analysis just at the internal operating pressure. Case 2 was to perform the creep analysis considering the internal operating pressure in conjunction with as-brazed residual stress. The results show that due to the mechanical property mismatch between filler metal and base metal, large residual stress is generated in the brazed joint, which has a great influence on creep for stainless steel plate-fin structure. The creep strain and stress distribution of the overall plate-fin structure is obtained. The position that is most likely to fail is the fillet for the plate-fin structure at high temperature. Especially in the fillet interface, the creep strain and stress distribution are discontinuous and uncoordinated, which have great effect on creep failure.


Author(s):  
Gurinder Singh Brar ◽  
Rakesh Kumar

Welding is one of the most commonly used permanent joining processes in the piping and pressure vessel industry. During welding a very complex thermal cycle is applied to the weldment, which in turn causes irreversible elastic-plastic deformation and consequently gives rise to the residual stresses in and around fusion zone and heat affected zone (HAZ). Presence of residual stresses may be beneficial or harmful for the structural components depending on the nature and magnitude of stresses. The beneficial effect of compressive stresses have been widely used in industry as these are believed to increase fatigue strength of the component and reduce stress corrosion cracking and brittle fracture. In large steel fabrication industries such as shipbuilding, marine structures, aero-space industry, high speed train guide ways and pressure vessels and piping in chemical and petrochemical industry the problem of residual stresses and overall distortion has been and continue to be a major issue. It is well established fact that material response of structural components is substantially affected by the residual stresses when subjected to thermal and structural loads. Due to these residual stresses produced in and around the weld zone the strength and life of the component is reduced. As AISI 304 stainless steel has excellent properties like better corrosion resistance, high ductility, excellent drawing, forming and spinning properties, so it is almost used in all types of application like chemical equipment, flatware utensils, coal hopper, kitchen sinks, marine equipment etc. But because of the problems of residual stresses during the time of welding it is very essential to understand the behavior and nature of AISI 304 stainless steel material. So in order to overcome all these problems a 3-dimensional finite element model is developed in a commercially available FEA code by drafting an approximate geometry of the butt welded joint and then the finite element analysis is performed, so that one can understand the complete nature of residual stresses in butt welding of AISI 304 stainless steel plate. In this paper, butt welding simulations were performed on two AISI 304 stainless steel plates by gas tungsten arc welding (GTAW). Analysis of butt welded joint by commercially available finite element analysis code showed that butt weld produced by GTAW resulted in 782.84 MPa of residual stress in plates. In addition, the residual stress is plotted against axial distance to have a clear picture of the magnitude of residual stress in and around weld area.


Sign in / Sign up

Export Citation Format

Share Document