scholarly journals INFLUENCE OF FILTRATION FLUX ON FOULING LAYER FORMATION IN GRAVITY-DRIVEN MEMBRANE FILTRATION

Author(s):  
Soshi YAMASAKI ◽  
Takashi HASHIMOTO ◽  
Kumiko OGUMA ◽  
Satoshi TAKIZAWA

Membranes ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 460
Author(s):  
Bastiaan Blankert ◽  
Bart Van der Bruggen ◽  
Amy E. Childress ◽  
Noreddine Ghaffour ◽  
Johannes S. Vrouwenvelder

The manner in which membrane-fouling experiments are conducted and how fouling performance data are represented have a strong impact on both how the data are interpreted and on the conclusions that may be drawn. We provide a couple of examples to prove that it is possible to obtain misleading conclusions from commonly used representations of fouling data. Although the illustrative example revolves around dead-end ultrafiltration, the underlying principles are applicable to a wider range of membrane processes. When choosing the experimental conditions and how to represent fouling data, there are three main factors that should be considered: (I) the foulant mass is principally related to the filtered volume; (II) the filtration flux can exacerbate fouling effects (e.g., concentration polarization and cake compression); and (III) the practice of normalization, as in dividing by an initial value, disregards the difference in driving force and divides the fouling effect by different numbers. Thus, a bias may occur that favors the experimental condition with the lower filtration flux and the less-permeable membrane. It is recommended to: (I) avoid relative fouling performance indicators, such as relative flux decline (J/J0); (II) use resistance vs. specific volume; and (III) use flux-controlled experiments for fouling performance evaluation.



Author(s):  
Peng Tang ◽  
Mengchao Shi ◽  
Xin Li ◽  
Yongli Zhang ◽  
Dong Lin ◽  
...  


Waterlines ◽  
2021 ◽  
Vol 40 (2) ◽  
pp. 92-106
Author(s):  
Lukas Dössegger ◽  
Alan Tournefier ◽  
Laura Germann ◽  
Nicola Gärtner ◽  
Timon Huonder ◽  
...  

Recontamination during transport and storage is a common challenge of water supply in low-income settings, especially if water is collected manually. Chlorination is a strategy to reduce recontamination. We assessed seven low-cost, non-electrically powered chlorination devices in gravity-driven membrane filtration (GDM) kiosks in eastern Uganda: one floater, two in-line dosers, three end-line dosers (tap-attached), and one manual dispenser. The evaluation criteria were dosing consistency, user-friendliness, ease of maintenance, local supply chain, and cost. Achieving an adequate chlorine dosage (∼2 mg/L at the tap and ≥ 0.2 mg/L after 24 h of storage in a container) was challenging. The T-chlorinator was the most promising option for GDM kiosks: it achieved correct dosage (CD, 1.5–2.5 mg/L) with a probability of 90 per cent, was easy to use and maintain, economical, and can be made from locally available materials. The other in-line option, the chlorine-dosing bucket (40 per cent CD) still needs design improvements. The end-line options AkvoTur (67 per cent CD) and AquatabsFlo® (57 per cent CD) are easy to install and operate at the tap, but can be easily damaged in the GDM set-up. The Venturi doser (52 per cent CD) did not perform satisfactorily with flow rates > 6 L/min. The chlorine dispenser (52 per cent CD) was robust and user-friendly, but can only be recommended if users comply with chlorinating the water themselves. Establishing a sustainable supply chain for chlorine products was challenging. Where solid chlorine tablets were locally rarely available, the costs of liquid chlorine options were high (27–162 per cent of the water price).





2019 ◽  
Vol 587 ◽  
pp. 117187 ◽  
Author(s):  
Haiqing Chang ◽  
Baicang Liu ◽  
Huizhong Wang ◽  
Si-Yu Zhang ◽  
Sheng Chen ◽  
...  


Desalination ◽  
2006 ◽  
Vol 189 (1-3) ◽  
pp. 97-109 ◽  
Author(s):  
A. Broeckmann ◽  
J. Busch ◽  
T. Wintgens ◽  
W. Marquardt


1987 ◽  
Vol 60 (9) ◽  
pp. 3183-3188
Author(s):  
Manabu Igawa ◽  
Takeshi Yoshida ◽  
Chiaki Ohtake ◽  
Takashi Hayashita


OENO One ◽  
2019 ◽  
Vol 53 (4) ◽  
Author(s):  
Marin Prodanov Prodanov ◽  
Margarita Aznar ◽  
Juan M. Cabellos ◽  
Visitación Vacas ◽  
Francisco López ◽  
...  

Malvar white wine (Vitis vinifera L.) was cold settled (CSW) and clarified by tangential-flow membrane filtration (TFMF). A 500 kDa molecular mass cut-off membrane was used. Filtration flux of 49-48 L/hm2 was achieved at transmembrane pressure of 0.7 bar. The treatment produced a completely clarified wine with turbidity of 0.11 NTU, but also a 10.3% loss of proteins, which could be related to the decrease of some flavour compounds. The CSW and the membrane filtered wines (MFW) were assessed by means of their aroma and phenolic composition, as well as their sensory properties. The results showed that the general physicochemical parameters and most of the analysed phenolic compounds were not or slightly (up to 7.6%) affected by the TFMF process. Nevertheless, the treatment produced an important loss of some key aroma compounds: up to 43% of fatty acid and alcohol esters and up to 26% of higher alcohols. Most affected were aroma species with higher molecular masses and lower polarities. Sensory analysis confirmed the global decrease in wine aroma. TFMF treatment produced also an increase of 52% of the wine benzaldehyde content.



2003 ◽  
Vol 3 (5-6) ◽  
pp. 217-222 ◽  
Author(s):  
N. Lee ◽  
G. Amy ◽  
H. Habarou ◽  
J.C. Schrotter

Natural organic matter (NOM) is responsible for organic fouling during membrane filtration. Flux decline can be affected by the characteristics of the NOM and its interaction with membranes and their associated properties. The results showed that serious flux decline observed for MF membranes may be caused by pore blockage associated with large (macromolecular) hydrophilic molecules. In the case of UF membranes, flux decline may be caused by sequential or simultaneous processes such as cake/gel formation with large (macromolecular) molecules and pore blockage with relatively smaller molecules during filtration. The flux decline tests with representative macromolecules showed that fouling was affected more by the physical characteristics (e.g. size and structure (shape)) of foulants than the characteristics (e.g. hydrophilicity) of foulants.



Sign in / Sign up

Export Citation Format

Share Document