uf membranes
Recently Published Documents


TOTAL DOCUMENTS

325
(FIVE YEARS 56)

H-INDEX

40
(FIVE YEARS 5)

Membranes ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 86
Author(s):  
Vadim Ippolitov ◽  
Ikenna Anugwom ◽  
Robin van Deun ◽  
Mika Mänttäri ◽  
Mari Kallioinen-Mänttäri

Ultrafiltration was employed in the purification of spent Deep Eutectic Solvent (DES, a mixture of choline chloride and lactic acid, 1:10, respectively) used in the extraction of lignin from lignocellulosic biomass. The aim of this was to recover different lignin fractions and to purify spent solvent. The results revealed that the commercial regenerated cellulose membranes—RC70PP and Ultracel 5 kDa UF membranes—could be used in the treatment of the spent DES. The addition of cosolvent (ethanol) to the spent DES decreased solvent’s viscosity, which enabled filtration. With two-pass ultrafiltration process with 10 kDa and 5 kDa membranes about 95% of the dissolved polymeric compounds (lignin and hemicelluloses) were removed from the spent DES. The utilized membranes also showed the capability to fractionate polymeric compounds into two fractions—above and under 10,000 Da. Moreover, the 10 kDa cellulose-based membrane showed good stability during a continuous period of three weeks exposure to the solution of DES and ethanol. Its pure water permeability decreased only by 3%. The results presented here demonstrate the possibility to utilize cellulose membranes in the treatment of spent DES to purify the solvent and recover the interesting compounds.


2021 ◽  
Vol 13 (24) ◽  
pp. 13682
Author(s):  
Esperanza M. Garcia-Castello ◽  
Antonio D. Rodriguez-Lopez ◽  
Sergio Barredo-Damas ◽  
Alicia Iborra-Clar ◽  
Jairo Pascual-Garrido ◽  
...  

Consumers are becoming more conscious about the need to include functional and nutritional foods in their diet. This has increased the demand for food extracts rich in proteins and peptides with physiological effects that are used within the food and pharmaceutical industries. Among these protein extracts, soy protein and its derivatives are highlighted. Isolated soy protein (ISP) presents a protein content of at least 90%. Wastewaters generated during the production process contain small proteins (8–50 kDa), and it would be desirable to find a recovery treatment for these compounds. Ultrafiltration membranes (UF) are used for the fractionation and concentration of protein solutions. By the appropriate selection of the membrane pore size, larger soy proteins are retained and concentrated while carbohydrates and minerals are mostly recovered in the permeate. The accumulation and concentration of macromolecules in the proximity of the membrane surface generates one of the most important limitations inherent to the membrane technologies. In this work, three UF membranes based on polyethersulfone (PES) were fabricated. In two of them, polyethylene glycol (PEG) was added in their formulation to be used as a fouling prevention. The membrane fouling was evaluated by the study of flux decline models based on Hermia’s mechanisms.


2021 ◽  
Vol 55 (9-10) ◽  
pp. 989-1000
Author(s):  
SAURABH C. SINGH ◽  
◽  
RUPESH A. KHARE ◽  
Z. V. P. MURTHY ◽  
◽  
...  

The performance of nanofiltration (NF) and ultrafiltration (UF) membranes was studied for separating hemicelluloses from a highly alkaline industrial stream, containing 17-18 wt% sodium hydroxide, resulting from the viscose process. Initially, screening experiments were performed to select suitable membranes, which were then investigated on a pilot scale spiral module. Screening experiments showed that the UF membrane, with a nominal molecular weight cut-off (MWCO) value of 3 kDa, and the NF one, with a nominal MWCO value of 0.5 kDa, showed a similar range of filtration performance and a flux of 4.2 L/m2.h. Further, a retention efficiency of 50% was observed for the 5 kDa and the 10 kDa membranes, indicating absence of any significant proportion of hemicelluloses in this range of molecular weights. The effects of process conditions were studied to understand their correlation with membrane performance with respect to hemicelluloses retention and permeate flux. UF membranes were found to be more prone to performance deterioration over time and with the number of cycles of usage during the pilot scale study, whereas the NF membrane showed consistent performance. It was seen that feed dilution can improve the membrane performance with respect to sodium hydroxide recovery. Significant reduction in feed viscosity with dilution resulted in a 50% increase in flux after normalizing for concentration.


Membranes ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 932
Author(s):  
Dalong Li ◽  
Changlu Gao ◽  
Xinyue Wang ◽  
Gang Wu ◽  
Jinghua Yin ◽  
...  

Membrane fouling has been one of the most important challenges in membrane separation operations. In this study, we report a facile strategy to prepare antifouling polysulfone (PSf) UF membranes by blending amphiphilic zwitterion polysulfone-co-sulfobetaine polysulfone (PSf-co-SBPSf) copolymer. The copolymer chemical structure was characterized by 1HNMR spectroscopy. The PSf/PSf-co-SBPSf blend membranes with various zwitterionic SBPSf segment contents exhibited better surface hydrophilicity and excellent antifouling ability compared to PSf and PSf/PEG membranes. The significant increase of both porosity and water permeance indicates that the PSf-co-SBPSf has a pore-forming effect. The pure water flux and flux recovery ratio of the PSf/PSf-co-SBPSf blend membranes were both remarked to improve 286.43 L/m2h and 92.26%, while bovine serum albumin (BSA) rejection remained at a high level (97.66%). More importantly, the water flux and BSA rejection see minimal variance after heat treatment, indicating excellent thermostability. Overall, the PSf/PSf-co-SBPSf blend membranes achieved a comprehensive performance of sustainable hydrophilic, high permeation flux, and remarkable antifouling ability, thus becoming a promising candidate in high-temperature separation application.


Membranes ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 850
Author(s):  
Saida Bousbih ◽  
Rihab Belhadj Ammar ◽  
Raja Ben Amar ◽  
Lasâad Dammak ◽  
Fadila Darragi ◽  
...  

Asymmetric mesoporous composite PTFE membranes wit 40, 50, and 85 wt.% of a clay (kaolin) were fabricated and characterized using a scanning electron microscope equipped with EDX for morphology and elemental analysis. The surface chemistry of the membranes was checked using Fourier transform infrared spectroscopy. The effect of incorporating the clay on the hydrophilicity, permeability, morphology, and antifouling properties of the fabricated membranes was investigated. It was observed that incorporating kaolin particles improved the mechanical properties but decreased the contact angle of the membranes, thereby resulting in an improvement in the membrane permeability. The performance of the three composite UF membranes was evaluated through the treatment of a real textile effluent sample containing indigo dye. The results confirmed that these membranes are effective in the removal of COD, color, and turbidity. Indeed, at a transmembrane pressure of 2.5 bar, almost total removal of the turbidity, COD removal >85%, and color removal > 97% were attained. Furthermore, membrane A85 (with 85% clay) showed the best performance, with a water flux of 659.1 L.h–1.m–2.bar–1. This study highlights the potential of incorporating low-cost clay material for the enhancement of the performance of mixed organic/inorganic matrix membranes, which can be applied to textile wastewater treatment.


Sign in / Sign up

Export Citation Format

Share Document